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Abstract

In this paper we introduce a Cayley-type graph for group-subgroup pairs (G,H) and
certain subsets S of G. We present some elementary properties of such graphs, includ-
ing connectedness, degree and partition structure, and vertex-transitivity, relating these
properties with those of the underlying group-subgroup pair. From the properties of the
underlying structures, some of the eigenvalues can be determined, including the largest
eigenvalue of the graph. We present a sufficient condition on the group-subgroup pair
(G,H) and the size of S that results on bipartite Ramanujan graphs. Among those
Ramanujan graphs there are graphs that cannot be obtained as Cayley graphs. As an-
other application, we propose the use of group-subgroup pair graphs to model linear
error-correcting codes.
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1. Introduction

For a group G and a symmetric subset S of G (i.e., S−1 = S), the Cayley graph
G(G,S) is the graph whose vertices are the elements of G and where g, h ∈ G are
adjacent if g−1h is in S. A considerable amount of information about the graph can
be determined from the properties of the group and the subset. Cayley graphs have
been widely studied and their applications are well known, such as the construction of
expander and Ramanujan graphs [8].

The aim of this paper is to introduce a new type of graph, constructed from a group
G, a subgroup H ⊂ G, and a subset S ⊂ G, that is a generalization of Cayley graphs,
study its basic properties and present some applications.
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Definition 1.1. Let G be a group, H a subgroup of G and S a subset of G such that
S ∩H is a symmetric subset of H. The Group-Subgroup Pair Graph G(G,H, S) is
the undirected graph with vertices G and simple edges given by

(h, hs) ∀h ∈ H, ∀s ∈ S.
We use the term pair-graph as a synonymous for group-subgroup pair-graph.

When the group and the subgroup coincide the definition reduces to that of a Cayley
graph. The motivation for the definition of the pair-graph comes from a recent paper
[4] on the extension of the group determinant for group-subgroup pairs using the wreath
determinant arising from the invariant theory of the α-determinant [5]. A note on the
connection between the two concepts is provided in Appendix A.

In Section 2 we give basic examples and discuss the degree of the vertices of group-
subgroup pair graphs. The degree structure of the resulting graphs depends on the
relation of the generating subset with the cosets of the subgroup, as detailed in Proposi-
tion 2.6. For instance, group-subgroup pair graphs are not regular in general, but there
are certain interesting properties on the degree structure of the graph.

Two important structural questions about a graph, especially for applications, are
whether the graph is connected and if it is bipartite. In Section 3 we describe how the
connectedness of the pair-graph is equivalent to two conditions. Namely, that

〈H ∩ ((S ∩H) ∪ (S −H)(S −H)−1)〉 = H

and that the subset S contains representatives of the cosets of H. On the other hand,
the condition S ∩H = ∅ is sufficient for the resulting graph to be bipartite. In general,
the existence of a homomorphism χ : G→ {−1, 1} such that χ(S) = {−1} ensures that
the Cayley graph G(G,S) is bipartite. In Theorem 4.5 we present an analogous condition
for pair-graphs with respect to a homomorphism χ : H → {−1, 1}.

The structural properties of graphs according to the choice of subset S and the index
of the subgroup are shown in Figure 1.

G(G,H, S)

Group-subgroup pair graph

S symmetric

[G:H ] = 1

Cayley graph G(G,S)

bi-regular

[G:H ] = 2

S ∩H=∅
regular
bipartite

S symmetric
Cayley graph

G(G,S)

[G:H ]> 2

multi-regular

S ∩H = ∅
multipartite

Ramanujan graphs
(see Corollary 6.4)

Figure 1: Families of group-subgroup pair graphs.

Group-subgroup pair graphs contain a subset of eigenvalues that is apparent from the
properties of the group G, subgroup H and the generating set S. When the pair-graph
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is k-regular, this set includes the trivial eigenvalue µ = k. In the general case, we also
present a lower bound for the multiplicity of the zero eigenvalue (see Proposition 5.4).
The description of these apparent eigenvalues and their eigenfunctions is given in Section
5. Additionally, we show that when S ∩H is empty, there is a subset S′ ⊂ G with the
property that the pair-graph G(G,H, S′) has the same nontrivial spectrum as G(G,H, S).

We present an application to the construction of Ramanujan graphs. A Ramanujan
graph is a k-regular graph that satisfies

|µ| 6 2
√
k − 1,

where µ is any nontrivial eigenvalue. This formulation is equivalent to the “Graph The-
oretical Riemann Hypothesis” for the Ihara zeta function associated to the graph, as
first explained by Sunada in [12]. Ramanujan graphs are the expander graphs that are
optimal from the spectral point of view. The original construction of families of Ramanu-
jan graphs was presented by Lubotzky, Phillips and Sarnak in [8] and independently by
Margulis in [11]. In Section 6 we show that regular group-subgroup pair graphs satisfying

|S| > |H|+ 2− 2
√
|H|,

are Ramanujan graphs. In particular, using this result we obtain bipartite Ramanujan
graphs that do not arise as Cayley graphs for the given group (see Corollary 6.4 and
Example 6.5).

In Appendix B, we present a way in which group-subgroups pair graphs may be used to
the design of linear codes. Coding theory studies the problem of reliably communicating
information over a noisy channel. This is done by adding redundancy to messages to
generate codewords, which are later decoded. When a linear transformation is used to
generate codewords, the codes are called linear. Linear codes can be represented by
means of a bipartite graph, the Tanner graph of the code. Conversely, a bipartite graph
may be used to model linear codes. We propose the use of group-subgroup pair graphs
for the modeling of linear codes due to their structural properties.

2. Examples and basic properties

First, we introduce the conventions and notation used throughout this paper. With
the exception of Section 4.3 all groups are assumed to be finite, and e always represents
the identity element of a given group G. The characteristic function of a subset X ⊂ G
is denoted by δX and a subset X ⊂ G is said to be symmetric if X−1 = X. For a given
group G and symmetric subset S we denote the corresponding Cayley graph by G(G,S).
The notation [k] is used for the set {1, 2, . . . , k} for k ∈ N. For a given group G, subgroup
H and subset S of G we denote by SH and SO, respectively, the subsets of G given by

SH := S ∩H,
SO := S −H.

Additionally, if H is a subgroup of index k + 1 of G, we will frequently consider a set of
representatives of the cosets, denoted by

{x0 = e, x1, . . . , xk},
3



and a partition of SO given by sets

Si := S ∩Hxi,

for i ∈ [k].
It follows directly from Definition 1.1 that the pair graph G(G,H, S) contains the

Cayley graph G(H,SH) as a subgraph. Therefore, the class of Cayley graphs is contained
in the class of group-subgroup pair graphs. When the generating subset S is empty, we
say that the resulting pair-graph G(G,H, S) is trivial.

Example 2.1. Let G = Z/12Z, H = {0̄, 3̄, 6̄, 9̄}, and S = {2̄, 4̄, 5̄, 7̄, 8̄}. The correspond-
ing pair-graph G(G,H, S) is shown on Figure 2.

Figure 2: The pair-graph G(Z/12Z, H, S).

We list some facts that follow from the definition that are used frequently in the
paper.

• All the vertices in S are adjacent to the identity e ∈ H.
• A vertex x ∈ G−H is incident to the edge (x, xs−1) for any s ∈ Hx ∩ SO.
• Two vertices x, y ∈ G−H are not adjacent.
• If (x, y) is an edge, then (hx, hy) is also an edge of the graph for any h ∈ H.

Example 2.2. Let K = F72 , the finite field of 72 elements, and H = F7 the prime
field of K considered as a subgroup of the additive group K. Then K is the direct sum
of seven copies of H. Let ϕ be the norm map of K as a field extension of H, then if
S = ϕ−1({5̄, 6̄}), we obtain the pair-graph G(K,H, S) shown in Figure 3. The pair-graph
G(F72 ,F7, S) contains vertices of degree 2, 4 and 16.

Note that the graphs of Examples 2.1 and 2.2 above are not regular graphs, conse-
quently they cannot be constructed as Cayley graphs.

Remark 2.3. We briefly refer another generalization of Cayley graphs for group G and
subgroup H, the Schreier Coset Graph. For a symmetric subset S of G, the Schreier
coset graph is defined as the graph with the set H\G of cosets as vertices and where two
cosets Hx and Hy are adjacent when there is an s ∈ S such that

Hxs = Hy.
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Figure 3: The pair-graph G(F72 ,F7, S).

A Schreier coset graph can have multiples edges and loops (even when e 6∈ S). The
Schreier coset graphs have been used for coset enumeration techniques, a detailed expo-
sition can be found in [2]. For a given group G, the Schreier coset graph is a Cayley
graph when H = {e}, whereas the group-subgroup pair graph is a Cayley graph when
H = G.

2.1. Degree structure of group-subgroup pair graphs

An isolated vertex is one that is not connected to any other vertex. In contrast with
Cayley graphs, group-subgroup pair graphs may contain isolated vertices even when the
generating subset is not empty. The following result characterizes the presence of isolated
vertices in group-subgroup pair graphs.

Proposition 2.4. i) The pair-graph G(G,H, S) contains no isolated vertices if and only
if S contains a representative for each coset of H on G other than He = H.

ii) The vertices H are isolated in G(G,H, S) if and only if S is the empty set.

Proof. Suppose S contains a representative for each coset other than H, then take x ∈
G − H, and s ∈ S the representative of Hx, then there is h ∈ H such that hs = x,
and therefore x is adjacent to h. Conversely, if there are no isolated vertices, by the
definition we must have HSO = G−H. The second statement follows directly from the
definition.

Example 2.5. Let G be any group of order n and H = {e}. The pair-graph G(G,H, S)
with S = G −H contains no isolated vertices. In fact, G(G,H, S) is a Tn−1 star graph,
illustrated in Figure 4.

A graph in which all the vertices have the same degree is called a regular graph. More
precisely, if all the vertices have identical degree k the graph is called k-regular graph.
An important property of a Cayley graph G(G,S) is that it is |S|-regular. Example 2.1
shows that this is not true in general for group-subgroup pair graphs, but there is still
uniformity on the degree of the vertices within each coset.

Proposition 2.6. In a pair-graph G(G,H, S), all the vertices in the same coset have the
same degree. Namely, the vertices in H have degree |S| and for x 6∈ H the degree of the
vertices in the coset Hx is |S ∩Hx|.
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Figure 4: The pair-graph G(G, {e}, S) with |G| = 6 and S = G− {e}.

Proof. It is clear from the discussion following Example 2.1 that any two vertices x, y ∈
G−H in the same coset Hx have the same degree |Hx∩SO| = |Hy ∩SO|. The vertices
in H have degree |S| by construction.

A graph with a partition of the vertices V1, V2, . . . , Vr such that the degree of the
vertices on each partition is constant is called a multi-regular graph or p1, p2, . . . , pr-
regular graph, where pi is the degree of the vertices on a given partition. Note that the
pi need not to be distinct. The above proposition shows that pair-graphs in general are
multi-regular graphs.

Returning to Example 2.1, (H + 1̄) ∩ S = {4̄, 7̄}, (H + 2̄) ∩ S = {2̄, 5̄, 8̄} and |S| = 5.
The cardinality of these sets corresponds to the degree of the vertices in the respective
cosets and the corresponding pair-graph is then a 2, 3, 5-regular graph.

Corollary 2.7. Let G be a group, H a subgroup of index [G : H] = k+ 1 and S a subset
of G such that SH is symmetric. Then for h ∈ H,

deg(h) >
k∑
i=1

deg(xi), (1)

in G(G,H, S). The equality holds when SH is empty. In particular, a nontrivial pair-
graph G(G,H, S) is regular if and only if SH = ∅ and [G : H] = 2, or when [G : H] = 1.

Proof. Since deg(h) = |S| and
∑k
i=1 deg(xi) =

∑k
i=1 |Si| = |SO| by Proposition 2.6, the

inequality follows since |S| > |SO|, and the equality is equivalent to SH = ∅. The if part
of the proof follows directly from the inequality and the definitions. For the only if part,
consider a j-regular pair-graph G(G,H, S), then by Proposition 2.6, we have |S| = j and
|Hx ∩ SO| = j for x 6∈ H. It follows from inequality (1) that |SO| = kj = k|S| and
therefore k is necessarily 0 or 1. If k = 1, then [G : H] = 2 and |SO| = |S|, so that
S = SO, and the case k = 0 gives [G : H] = 1.

Note that in view of Proposition 2.6, we can regard deg(Hx) as the degree of any of
the elements of the coset, and it is independent of the choice of representatives of the
cosets. In that case, the above identity can be written as

deg(H) >
∑
i

deg(Hxi),

with equality happening when SH is empty. The preceding discussion shows that the
structure of H\G, the set of cosets of H on G, is closely related to the degree structure
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of the graph, this is also the case for the eigenvalues of the graph, as described in Section
6.

Proposition 2.8. Let G be a group, H a subgroup with [G : H] = 2, and S a subset of
G such that G(G,H, S) is a nontrivial regular pair-graph. If S is a symmetric set, the
pair-graph G(G,H, S) is a Cayley graph. Namely, G(G,H, S) = G(G,S).

Proof. The conditions imply that SO = S, then by the definition of the pair-graph the
edges are given by

(h, hs),∀h ∈ H, ∀s ∈ S and (x, xs−1),∀x ∈ (G−H), ∀s ∈ S.

Since S is symmetric one can simply write (x, xs), ∀x ∈ G, ∀s ∈ S, which is the definition
of Cayley graph.

Example 2.9. If R is a ring we denote by H(R) the ring of quaternions with coefficients
in R. Take p and q odd prime numbers with q > 2

√
p such that p is not a square modulo

q. Consider the set Sp ⊂ H(Z) of integer quaternions

α = a0 + a1i+ a2j + a3k

of norm p with a0 ≥ 0 such that α ≡ 1(mod 2) or α ≡ i + j + k(mod 2). It is known
that there are p + 1 such integer quaternions. Let τ : H(Z) → H(Fq) be the reduc-
tion modulo q, ψ be the embedding of H(Fq) into M2(Fq) and ϕ the canonical ho-
momorphism of GL2(q) onto PGL2(q). Set S = (ϕ ◦ ψ ◦ τ)(Sp), then the pair-graph
G(PGL2(q), PSL2(q), S) is a connected bipartite (p + 1)-regular graph. Moreover, the
set S is symmetric and the pair-graph G(PGL2(q), PSL2(q), S) is actually the Ramanu-
jan Cayley graph Xp,q of Lubotzky, Phillips and Sarnak [8].

3. Connectedness of group-subgroup pair graphs

3.1. Connectedness

In this section we discuss the connectedness of group-subgroup pair graphs. Recall
that a Cayley graph G(G,S) is connected if and only if 〈S〉 = G. We begin by considering
the case where SH is empty, in other words, none of the vertices of H are adjacent in
G(G,H, S).

Lemma 3.1. Let G be a group, H a subgroup and S a subset of G with SH = ∅. The
vertices of H in the pair-graph G(G,H, S) are in the same connected component if and
only if 〈H ∩ (SS−1)〉 = H.

Proof. If 〈H ∩ (SS−1)〉 = H, then it suffices to prove that the identity e is connected to
an arbitrary h ∈ H. For h ∈ H, we have h = s1s

−1
2 . . . sn−1s

−1
n with sis

−1
i+1 ∈ H, then

if we set h1 = s1s
−1
2 . . . sn−3s

−1
n−2, h1 is adjacent to h1sn−1 = x1 and h is adjacent to

hsn = h1sn−1 = x1, so h1 is connected to h. By repeating this process we conclude that
e is connected to h.

On the other hand, if all the vertices of H in the graph G(G,H, S) are in the same
connected component, any h ∈ H is connected to e ∈ H. Since there are no direct
connections between two elements of H or G−H, there must be path from e to h where
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every even vertex is an element of H, so we have a sequence h0 = e, h1, . . . , hn−1, hn = h
of elements of H, where hi and hi+1 are adjacent to xi ∈ G −H for i = 0, 1, 2, . . . , n −
1. That is, we have a sequence of edges (h0, x0), (x0, h1) . . . (hn−1, xn−1), (xn−1, hn), as
shown in Figure 5.

....
h0 hn

xn−1

hn−1

x0

h1

x1

h2

Figure 5: The path from h0 to hn.

Then, for si ∈ S,

x0 = h0s0 , x0 = h1s1

x1 = h1s2 , x1 = h2s3

...
...

xn−1 = hn−1s2n−2 , xn−1 = hn−1s2n−1

thus,

s0 = h0s0 = h1s1 h1 = s0s
−1
1

h1s2 = h2s3 h2 = h1s2s
−1
3

... ⇒
...

hn−1sn−2 = hns2n−1 h = hn−1sn−2s
−1
n−1,

it follows that sis
−1
i+1 ∈ H and h ∈ 〈H ∩ SS−1〉.

Note that since a group-subgroup pair graph may contain isolated vertices, the con-
dition of the lemma alone is not sufficient for connectedness.

Proposition 3.2. Let G be a group, H a subgroup and S a subset of G with SH = ∅.
The pair-graph G(G,H, S) is connected if and only if

〈H ∩ SS−1〉 = H

and S contains representatives of all the cosets of H other than H.

Proof. The result follows from Lemma 3.1, Proposition 2.4 and the observation that any
vertex x ∈ G −H must be connected to some h ∈ H which is in turn connected to the
identity e ∈ H.

For the general result, we introduce the notation

S̃ := H ∩ SS−1,

for a subset S of G−H.
8



Theorem 3.3. A pair-graph G(G,H, S) is connected if and only if

〈SH ∪ S̃O〉 = H

and S contains representatives of all the cosets of H other than H.

Proof. First we see that the vertices of H are in the same connected component if and
only if 〈SH ∪ S̃O〉 = H. The proof of this fact is the same as that of Lemma 3.1 while
considering that in the path from e ∈ H to h ∈ H there may be edges connecting elements
h1, h2 from H, in such case we have h2 = h1sH , with sH ∈ SH . Then the result follows
like in Proposition 3.2.

Example 3.4. Let G = Z/12Z, H ∼= Z/4Z. Set S = {2̄, 8̄} and S′ = {1̄, 2̄, 6̄, 7̄, 8̄},
the corresponding group-subgroup pair graphs are shown in Figure 6. Note that 〈H ∩
SS−1〉 = {0̄, 6̄} and 〈S′H ∪ S̃′O〉 = {0̄, 6̄}, so neither graph is connected. Moreover, as
there are no elements of the coset H + 1̄ = {1̄, 4̄, 7̄, 1̄0} in S, all the vertices of that coset
are isolated on G(G,H, S).

Figure 6: The pair-graphs G(G,H, S) and G(G,H, S′).

3.2. Connected Components

If a graph is not connected, the characterization of the connected components of the
graph is desirable. For Cayley graphs, the connected component of the identity is the
subgroup 〈S〉, and each of the cosets of 〈S〉 in G are the connected components of the
graph. This does not extend directly to group-subgroup pair graphs, since the connected
component of the identity may include vertices from G−H. In particular, the subgroup
〈SH ∪ S̃O〉 of H is the subgroup of elements of H that lie on the identity component.
The cosets of this subgroup are the intersection of H with certain connected components
of the graph.

Proposition 3.5. Let U = 〈SH ∪ S̃O〉. Then the identity component Γe of the pair-
graph G(G,H, S) is U ∪ USO. The remaining connected components of the pair-graph
G(G,H, S) are either of the type Γh = hΓe for h ∈ H or the type {x} for x ∈ G−H.
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Proof. The first statement follows from the preceding discussion and the definition of the
pair-graph G(G,H, S). Any path (e, g1, g2, . . . , gn) from the identity e to gn corresponds
uniquely to a path (h, hg1, . . . , hgn) from h to hgn so the connected component of h ∈ H
is Γh = hΓe. Take x ∈ G−H, if x is an isolated vertex its connected component is {x},
otherwise it is connected to an h ∈ H and its connected component is of the type Γh.

A consequence of the above proposition is that an arbitrary connected component Γ
of G(G,H, S) has cardinality equal to |Γe| or 1. Moreover, in the first case we also have
|Γ ∩H| = |Γe ∩H| and |Γ−H| = |Γe −H|.

For Cayley graphs, the number of connected components of the graph is the index
[G : 〈S〉]. The existence of isolated vertices even for nontrivial pair-graphs makes the
formulation slightly more complicated.

Theorem 3.6. The number of connected components of G(G,H, S) is

[H : 〈SH ∪ S̃O〉] + |G−H| − |HSO|. (2)

Proof. By Proposition 3.5, the first term in the formula is the number of connected
components Γh that occur on H, the second and third terms count the number of isolated
points in G−H, by Proposition 2.4. Since there are not edges between elements of G−H,
this is the number of connected components of the graph.

Proposition 3.5 and Theorem 3.6 completely characterize the connected components
for the pair-graphs G(G,H, S) for given group G, subgroup H and valid subset S ⊂ G.

Example 3.7. For the pair-graph of Example 2.1 we have S = {2̄, 4̄, 5̄, 7̄, 8̄}. Since
h = 3̄ = 8− 5 ∈ S − S is a generator of H, the first term in formula (2) is 1, the second
term is 8 and all the cosets are represented so the last term is 8, resulting in 1 connected
component. As for the pair-graphs generated by S and S′ of Example 3.4, in both cases
the first term is 2, the second term is 8, and the final term is 4 for the graph generated by
S and 8 for the graph generated by S′, therefore G(G,H, S) has 6 connected components
and G(G,H, S′) has 2 connected components as it is confirmed visually in the diagrams.

4. Further properties of group-subgroup pair graphs

4.1. Vertex transitivity and group actions

A graph is vertex transitive when for any pair of different vertices x and y there is
graph automorphism ϕ such that ϕ(x) = y. Cayley graphs are naturally vertex transitive
by means of left translations Lg with g ∈ G. Any vertex transitive graph must be regular,
therefore by Proposition 2.6 we have the following result.

Proposition 4.1. Nontrivial pair-graphs G(G,H, S) are not vertex transitive when [G :
H] > 3 or when [G : H] = 2 and SH is not empty.

The left translation Lh by h ∈ H on G(G,H, S) is a graph isomorphism. Clearly,
for any pair of elements x, y of a coset Hx there is an h ∈ H such that Lh(x) = y.
However, the left action by an arbitrary g ∈ G is not necessarily a graph automorphism.
For instance, in Example 2.1 the action of g = 1 is not a graph automorphism, as the
image of 0 is 1, and degree(0̄) = 5, but degree(1̄) = 2.
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Let L(G) be the set of complex valued functions defined on the group G, and consider
λH : H → GL(L(G)) the left permutation representation of H given by the action
λH(h)f(x) = f(h−1x) for h ∈ H and x ∈ G. Recall that for any graph with vertices on
G we can associate the adjacency operator A, acting on L(G), with action given by

Af(x) =
∑
x∼y

f(y).

Proposition 4.2. Let A be the adjacency operator for a group-subgroup pair graph
G(G,H, S), then for any h ∈ H

λH(h)A = AλH(h).

Proof. Note that for the pair-graph G(G,H, S) and f ∈ L(G), the adjacency operator is
given by

Af(y) =

{∑
s∈S f(ys) if y ∈ H∑
s∈S∩Hy f(ys−1) if y ∈ G−H

The result then follows from direct calculation using the fact that for any x ∈ G and
h ∈ H, x and h−1x belong to the same coset.

For h ∈ H, λH(h) is a permutation matrix for the elements of G corresponding to
the left multiplication by h. By Theorem 15.2 of [1], a bijection ϕ of the vertices of a
graph is a graph automorphism if MϕA = AMϕ, where Mϕ is the permutation matrix
associated with ϕ. Moreover, Proposition 4.2 shows that eigenspaces Vµ of the adjacency
operator are H-invariant under the permutation representation. Therefore, one can use
the degree of the irreducible representations of the subgroup H to obtain lower bounds
for multiplicity of the eigenvalues of the pair-graph G(G,H, S).

Proposition 4.3. Let S be a subset of G such that SH is symmetric and ψ a H-invariant
automorphism of G. Then the pair-graphs G(G,H, S) and G(G,H,ψ(S)) are isomorphic.

Proof. For any h ∈ H,x ∈ G−H, s ∈ S, we have

(h, hs) 7−→ (ψ(h), ψ(h)ψ(s))

(x, xs−1) 7−→ (ψ(x), ψ(x)ψ(s)−1).

Since ψ is H-invariant, it is a graph isomorphism with inverse ψ−1.

Examples of such automorphisms are the inner automorphisms ψh(g) = h−1gh with
h ∈ H.

Proposition 4.4. Let S be a subset of G such that SH is symmetric and Rh′ the right
translation by h′ ∈ H. Then the pair-graphs G(G,H, S) and G(G,H, SH ∪ Rh′(SO)) are
isomorphic.
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Proof. The map ϕh′ : G → G given by ϕh′(x) = xh′ for x ∈ G −H and ϕh′(h) = h for
h ∈ H is clearly bijective. For h ∈ H and s ∈ SH , the edge (h, hs) is fixed by ϕh′ . As
for h ∈ H, s ∈ SO, we have

(h, hs) 7−→ (h, hsh′) = (h, hs′),

(x, xs−1) 7−→ (xh′, xs−1) = (xh′, xh′s′−1),

with s′ = sh′ ∈ Rh′(SO). Therefore the map ϕh′ is an graph isomorphism with inverse
ϕh′−1 .

4.2. Bipartite group-subgroup pair graphs

A graph is bipartite when there is a bipartition V+, V− of the vertices such that any
pair of vertices in the same subset are not adjacent. For a group G and symmetric subset
S, if there is an homomorphism χ : G→ {−1, 1}, such that χ(S) = {−1} then the Cayley
graph G(G,S) is bipartite, this condition is also necessary when the graph is connected,
for a proof see chapter 4 of [3]. It is clear that the existence of such homomorphism also
implies that the pair-graph G(G,H, S) is bipartite, since it is a subgraph of the Cayley
graph G(G,S ∪ S−1). In general, the bipartiteness of the pair-graph G(G,H, S) is not
enough to construct a homomorphism from G to {−1, 1}.
Theorem 4.5. If there is a group homomorphism χ : H → {−1, 1} such that χ(SH) =

{−1} and χ(S̃O) = {1}, then the pair-graph G(G,H, S) is bipartite. The converse holds
when the pair-graph is connected.

Proof. Suppose the homomorphism χ exists, then we will prove that there are no closed
paths of odd length in the pair-graph. Since any closed path of nonzero length starting
on x ∈ G−H contains at least one element of h ∈ H we restrict to closed paths starting
on h ∈ H. Suppose there is one such path of odd length l, and as in the proof of Lemma
3.1 we see that this path consists of elements of SH and S̃O, namely

h = hs′1s
′
2 . . . s

′
n+k, (3)

where s′i ∈ SH ∪ S̃O, k is the number of elements of SH and n is the number of elements

of S̃O. In particular, we have
l = 2n+ k,

so that k is odd. We apply the homomorphism to (3) to get

χ(h) = (−1)k(1)nχ(h) = −χ(h),

and the result follows from this contradiction. On the other hand suppose that the pair-
graph is bipartite and connected and let V+ and V− be the bipartition of the graph, with
e ∈ V+. For h ∈ H, set

χ(h) =

{
1 if h ∈ V+

−1 if h ∈ V−
,

from this and the bipartiteness of the graph it follows that χ(SH) = {−1} and χ(S̃O) =
{1}. Note that since the graph is bipartite and connected, we can write

χ(h) = (−1)l(e,h),
12



where l(e, h) is the length of a path from e to h in G(G,H, S), in other words, the word

length of h with the generators SH and S̃O. It is clear that with this definition the map
χ is a homomorphism that satisfies the required conditions.

Example 4.6. Let G = A4, the alternating group of 4 letters, H, the Klein four-
group embedded as a subgroup of G, and S = {(1, 2)(3, 4), (1, 4)(2, 3), (1, 2, 3), (1, 4, 3),
(2, 3, 4), (2, 4, 3)}, using cycle notation. Observe that (1, 3, 2), the inverse of (1, 2, 3),
is not contained in S. The pair-graph G(G,H, S) is a bipartite graph. The graph is
presented in Figure 7, with the vertices of the bipartition shown in different shapes.

Figure 7: The bipartite pair-graph G(G,H, S).

The homomorphism χ : H → {−1, 1} is given by

χ(e) = 1, χ((1, 3)(2, 4)) = 1,

χ((1, 2)(3, 4)) = −1, χ((1, 4)(2, 3)) = −1,

it is easy to verify that it has the required properties. On the other hand, any homomor-
phism ρ : G → {−1, 1} with ρ(S) = {−1} would have ρ(S−1) = {−1}, but in this case
(1, 3, 2) = (1, 2)(3, 4) · (1, 4, 3), therefore there are no homomorphisms ρ : G → {−1, 1}
that satisfy the condition ρ(S) = {−1}.

Note that in the case SH = ∅, the subsets H and G − H form a bipartition of
G(G,H, S), therefore the pair-graph G(G,H, S) is bipartite. In this case, the correspond-
ing homomorphism χ : H → {−1, 1} is the trivial one: χ(h) = 1, for all h ∈ H.

4.3. Some remarks on infinite pair-graphs

In this section we consider the case where G is an infinite group, H a given subgroup
of G and S a subset of G such that SH is symmetric. The definition for group-subgroup
pair graph G(G,H, S) remains the same as in Definition 1.1.

The results on degree structure of Section 2.1 hold without any changes when the
generating set S and the index [G : H] are finite. For instance, if G = Z, H = 3Z and
S = {−6, 1, 4, 5, 6, 11}, then the vertices of H in the resulting pair-graph G(G,H, S) have
degree 6 and the vertices of the cosets 3Z+ 1 and 3Z+ 2 have degree 2. Note that when
the generating set S and the index [G : H] are not finite, the inequality of Corollary 2.7
cannot be used, otherwise the results on that section apply without changes.

13



The results of connectedness, and in particular Theorem 3.3 and Proposition 3.5 hold
without modification. It is important to note that when the index [G : H] is not finite a
corresponding connected group-subgroup pair graph has vertices with infinite degree, in
other words, the resulting graph is not locally finite.

When the pair-graph contains no isolated vertices, then the number of connected
components is given by

[H : 〈SH ∪ S̃O〉]
as in Theorem 3.6. The results of Sections 4.1 on group actions and 4.2 on bipartite
pair-graphs hold without changes.

5. Spectra of group-subgroup pair graphs

5.1. A set of apparent eigenvalues of a group-subgroup pair graph

The trivial eigenvalue of a k-regular graph is µ = k and it corresponds to any constant
eigenfunction f on the vertices of the graph. By extension, the trivial eigenvalue of a
Cayley graph G(G,S) is µ = |S|. In this section we extend this notion to the group-
subgroup pair graphs.

Theorem 5.1. Let G be a group, H a subgroup of G of index [G : H] = k + 1 ≥ 2, and
S a subset of G such that SH is symmetric and |SO| 6= 0. Then

µ± =

|SH | ±
√
|SH |2 + 4

(∑k
i=1 |Si|2

)
2

(4)

are eigenvalues of the graph G(G,H, S). The corresponding eigenfunctions are defined by

f±(y) =

{
µ±, if y ∈ H
|Si| if y ∈ Hxi, i ∈ [k].

Proof. From (4), the numbers µ± satisfy

(µ±)2 − |SH |µ± −
k∑
i=1

|Si|2 = 0.

Then, for h ∈ H, we have

Af±(h) =
∑
s∈S

f±(hs)

=
∑
s∈SH

f±(hs) +

k∑
i=1

∑
s∈Si

f±(hs)

=|SH |µ± +

k∑
i=1

|Si|2 = (µ±)2

=µ±f(h).

14



Similarly, for x ∈ Hxi, i = 1, . . . , k,

Af±(x) =
∑
s∈Si

f(xs−1)

=µ±|Si|
=µ±f±(x).

Note that for the case |SO| = 0, µ+ is an eigenvalue with corresponding eigenvector
f+ as defined in the above Theorem, but f− ≡ 0 so it is not an eigenfunction.

Proposition 5.2. The eigenvalue µ+ is the largest eigenvalue of the graph G(G,H, S)

with multiplicity [H, 〈SH ∪ S̃O〉].

Proof. First, consider the case of a connected pair-graph G(G,H, S), in particular |Si| 6= 0
for all i ∈ [k] and the eigenfunction f+ takes only positive values. By Theorem 8.1.4
and Corollary 8.1.5 of [6], any eigenfunction that only takes nonzero values of the same
sign corresponds to the largest eigenvalue, which has multiplicity 1. The eigenfunction
f+ satisfies this condition, therefore corresponds to the largest eigenvalue and it is an
eigenvalue of multiplicity one, so the statement of the proposition follows.

For the remaining case, let h ∈ H and consider the connected component Γh as a
subgraph of G(G,H, S) and note that f+|Γh

is an eigenfunction of Γh with eigenvalue µ+.
Then by the argument above, µ+ is the largest eigenvalue of Γh with multiplicity 1. Now,
it is well known that the characteristic polynomial pG(x) of the graph G = G(G,H, S) is
the product of the characteristic polynomials of its connected components,

pG(x) = pΓh1
(x)pΓh2

(x) . . . pΓhr
(x)xl,

where r is the number of connected components of G(G,H, S) containing elements of H
and l the number of isolated vertices. Moreover, since µ+ is the largest root of pΓhi

(x)
for each hi ∈ H, then is the largest root of pG(x) and therefore the largest eigenvalue
of G(G,H, S). Furthermore, since µ+ is a simple eigenvalue for each of the subgraphs
Γhi , then by Theorem 3.6 µ+ is an eigenvalue of G(G,H, S) with multiplicity equal to

r = [H, 〈SH ∪ S̃O〉].

Example 5.3. Let G = Z/12Z, H ' Z/4Z as a subgroup of G and S = {1̄, 3̄, 8̄, 9̄, 1̄0, 1̄1}.
The pair-graph G(G,H, S) (shown in Figure 8) has the eigenvalue µ+ = 4 with multi-
plicity 1 and µ− = −2 with multiplicity 4, the remaining eigenvalues are µ = 2 with
multiplicity 2 and µ0 = 0 with multiplicity 5.

By Proposition 5.2, when SH is empty the eigenvalue µ− is the most negative eigen-
value of the group-subgroup pair graph. In the general case, the above example shows
the eigenvalue µ− may have higher multiplicity even when µ+ has multiplicity 1.

From the decomposition of the characteristic polynomial of the adjacency matrix, we
can obtain a lower bound for the multiplicity of the eigenvalue µ0 = 0.
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Figure 8: The pair-graph G(G,H, S) of Example 5.3

Proposition 5.4. Let G be a group and H a subgroup of G of index [G : H] ≥ 2. The
multiplicity of the eigenvalue µ0 = 0 of a nontrivial pair-graph G(G,H, S) is at least

|G| − |H| −min(|HSO|, |H|) =

{
|G| − |H| if SO = ∅.
|G| − 2|H| if SO 6= ∅.

In particular, if [G : H] > 2, µ0 is an eigenvalue of the pair-graph G(G,H, S).

Proof. First, suppose that the pair-graph G(G,H, S) contains isolated vertices, then from
the factorization of the characteristic polynomial of the adjacency matrix we have that
µ0 = 0 is an eigenvalue with multiplicity at least the number of isolated components,
by Theorem 3.6 this number is |G| − |H| − |HSO|. For a general pair-graph G(G,H, S),
consider an eigenfunction f associated with the eigenvalue µ0 = 0 with f(h) = 0 for
h ∈ H, then f must satisfy the |H| linear equations∑

s∈SO

f(hs) = 0.

The matrixB corresponding to this system is a |H|×|G−H|matrix, then from elementary
linear algebra it holds that |H| is an upper bound for the rank of B. Therefore the kernel
of B has dimension at least |G| − 2|H|, so the multiplicity of the eigenvalue µ0 = 0 is at
least |G| − 2|H|. The result follows from considering the two cases at the same time.

From the above discussion, for a given pair-graph G(G,H, S) with [G : H] ≥ 2 there
is a set {µ+, µ−, µ0} of eigenvalues that are apparent from the properties of the group,
subgroup and generating set.

Definition 5.5. The trivial eigenvalues of the group-subgroup pair graph G(G,H, S) are
the elements of the set given by

• {|S|} when [G : H] = 1, or {|S|,−|S|} if the graph is bipartite.
• {µ+, µ−} when [G : H] = 2.
• {µ+, µ−, µ0} when [G : H] > 2.

Example 5.6. The pair-graph in Example 2.2 has |SO| = |S| = 16, with four cosets of
degree 2 and two cosets of degree 4, therefore the trivial eigenvalues are µ± = ±4

√
3,
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and µ0 = 0 with multiplicity bounded below by 35. The pair-graph in Example 4.6 has
|SH | = 2 and |S1| = |S2| = 2, so its trivial eigenvalues are µ+ = 4, µ− = −2 and µ0 = 0
with multiplicity at least 4.

5.2. Eigenfunctions for nontrivial eigenvalues

When the pair-graph G(G,H, S) is connected, the eigenfunction corresponding to
the trivial eigenvalue µ+ is constant on the cosets. The situation for the remaining
eigenvalues is given in the following result.

Proposition 5.7. Retain the notation of Theorem 5.1 and let f be an eigenvalue of the
pair-graph G(G,H, S) associated with a nontrivial eigenvalue µ. Then, for any coset Hxi∑

x∈Hxi

f(x) = 0. (5)

Moreover, if g is an eigenfunction associated with the eigenvalue µ0 = 0, then

∑
h∈H

g(h) =

k∑
i=1

|Si|
∑
x∈Hxi

g(x) = 0. (6)

Proof. For a fixed s ∈ Si, we have∑
h∈H

f(hs) =
∑
x∈Hxi

f(x).

Then, summing over all s ∈ Si,∑
s∈Si

∑
h∈H

f(hs) = |Si|
∑
x∈Hxi

f(x) (7)

Note that this includes the case Hx0 = H. Similarly, we see that

|Si|
∑
h∈H

f(h) =
∑
x∈Hxi

∑
s∈Si

f(xs−1)

= µ
∑
x∈Hxi

f(x) (8)

Therefore, summing (7) over all Si and SH ,

µ
∑
h∈H

f(h) = |SH |
∑
h∈H

f(h) +

k∑
i=1

|Si|
∑
x∈Hxi

f(x) (9)

Now, multiplying (9) by µ and using (8) on the right-hand side gives

µ2
∑
h∈H

f(h) = |SH |µ
∑
h∈H

f(h) +

k∑
i=1

|Si|2
∑
h∈H

f(h).

If µ 6= 0 and
∑
h∈H f(h) 6= 0 it follows that µ = µ±, contradicting the hypothesis.

Therefore, (5) follows for µ 6= 0. The result (6) for µ = 0 follows from (8) and (9).
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Proposition 5.8. Let f be an eigenfunction of the pair-graph G(G,H, S) associated with
the eigenvalue µ. If f |H 6≡ 0 and f is constant on the cosets of H then µ is a trivial
eigenvalue.

Proof. For h ∈ H, we have

µf(h) = |SH |f(h) +

k∑
i=1

|Si|f(xi), (10)

and
µf(xi) = |Si|f(h). (11)

If µ = 0 then f |H ≡ 0, contradicting the hypothesis. Then, substituting (11) in (10) we
obtain

f(h)(µ2 − µ|SH | −
k∑
i=1

|Si|2) = 0.

Since f(h) 6= 0, µ is one of the trivial eigenvalues.

Returning to the ideas following Proposition 4.2, let V be the subspace of L(G)
consisting of functions constant on the cosets of H. This is a H-invariant subspace under
the permutation representation λH , and the restriction to this subspace corresponds to
the trivial representation of H in L(G). Then Proposition 5.8 shows that any eigenspace
Vµ ⊂ V corresponds to either one of the trivial eigenvalues µ± or the zero eigenvalue
(when f |H ≡ 0).

As an application, we relate the nontrivial eigenvalues of two pair-graphs with com-
plementary generating set.

Corollary 5.9. Let S be a subset of G with SH = ∅, and set S′ = (G−H)− S. If f is
an eigenfunction of G(G,H, S) associated with a nonzero eigenvalue µ 6= µ±, then f is
an eigenfunction of G(G,H, S′) corresponding to the eigenvalue −µ.

Proof. Denote the adjacency operator of the graphs G(G,H, S), G(G,H, S′) and G(G,H,G−
H) by A,B and C respectively, so that C = A+B. We have

Bf(x) = (C −A)f(x) = Cf(x)− µf(x),

therefore it is enough to prove Cf(x) = 0, in other words, that∑
h∈H

f(h) = 0,

∑
x∈G−H

f(x) = 0.

This is true by Proposition 5.7.

Example 5.10. For G = Z/20Z, H = Z/10Z, S = {3̄, 5̄, 7̄} and S′ = {1̄, 3̄, 5̄, 1̄3,
1̄5, 1̄7, 1̄9} we have the pair-graphs G(G,H, S) and G(G,H, S′), shown in Figure 9.
Table 1 contains the positive eigenvalues for both of the graphs. Since both graphs are
bipartite the remaining eigenvalues correspond to the negatives of the ones shown. Note
that S ∪ S′ 6= G − H = {1̄, 3̄, 5̄, . . . , 1̄9}, but S′′ = R4(S) = {7̄, 9̄, 1̄1} is such that
G(G,H, S) ∼= G(G,H, S′′) by Proposition 4.4, and S′ ∪ S′′ = G−H.
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Figure 9: The pair-graphs with the same nontrivial eigenvalues, shown in Table 1.
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Table 1: Table of nontrivial eigenvalues for the pair-graphs of Figure 9.

When the subgroup is of index 2, the sum over the elements of any coset is zero for an
eigenfunction of the corresponding pair-graph, including those associated with the zero
eigenvalue. Therefore, the result of Corollary 5.9 holds for any nontrivial eigenvalue for
the index 2 case. This is further explored in section 6.

6. Spectra of regular pair-graphs and Ramanujan graphs

Nontrivial regular pair-graphs G(G,H, S) are bipartite when [G : H] = 2. The spectra
of these graphs is symmetric about 0 and the largest eigenvalue is the trivial eigenvalue
µ+ = |S|.

Let G be a finite group of order 2n and H the subgroup of index 2. Then, for any
subset S ⊂ G −H with |S| = k, let S′ = (G −H) − S. We have |S′| = n − k and any
constant function f is an eigenfunction of the pair-graphs G(G,H, S) and G(G,H, S′)
corresponding to µ1 = k and λ1 = n−k, respectively. Similarly, for c ∈ C×, the function
f = c(δH − δG−H) is an eigenfunction of G(G,H, S) and G(G,H, S′) corresponding to
µ2n = −k and λ2n = k − n.

Lemma 6.1. Let G be a group, H a subgroup of index 2 and S a subset of G−H with
|S| = k ≥ 1. Set S′ = (G−H)− S. If the pair-graph G(G,H, S) is not connected, then
there are independent eigenfunctions f and g of G(G,H, S) associated to µ = ±k such
that f − g is an eigenfunction of G(G,H, S′) corresponding to the eigenvalue −µ.

Proof. With the same notation as in the proof of Corollary 5.9, for a connected compo-
nent Γ of G(G,H, S), consider the function f = δΓ or f = δΓ∩H − δΓ−H , which can be
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verified to be eigenfunctions corresponding to µ = k and µ = −k, respectively. We can
similarly define g with respect to a different connected component Ω of G(G,H, S), it
is clear that f and g are linearly independent. Note that there are no isolated vertices
on the graph, therefore by Proposition 3.5, all the connected components have the same
cardinality, in particular |Γ ∩H| = |Ω ∩H| and |Γ−H| = |Ω−H|. Then, we have

Cf(h) =
∑

x∈G−H
f(x) =

∑
x∈Γ−H

f(x) for h ∈ H,

Cf(x) =
∑
h∈H

f(h) =
∑

h∈Γ∩H
f(h) for x ∈ G−H.

It follows that Cf = δH |Γ − H| + δG−H |Γ ∩ H| or Cf = −δH |Γ − H| + δG−H |Γ ∩ H|
depending on the whether µ = k or µ = −k. Then it is clear that C(f − g) = 0 and

B(f − g) = (C −A)(f − g) = C(f − g)−A(f − g) = −µ(f − g).

By Theorem 5.1, when G(G,H, S) is not connected the eigenvalue µ = k has multi-
plicity equal to the number c of connected components of G(G,H, S), then by Lemma 6.1
the graph G(G,H, S′) also has the eigenvalue µ = k with multiplicity c− 1. For regular
pair-graphs we can reformulate the results of Corollary 5.9 and Lemma 6.1 as follows

Theorem 6.2. Let G be a group of order 2n, H a subgroup of index 2 and S a subset
of G −H with |S| = k. Suppose that λ1 > λ2 > . . . > λ2n is the spectrum of the pair-
graph G(G,H, S). Then there is a (n − k)-regular pair-graph G(G,H, S′) with spectrum
µ1 > µ2 > . . . > µ2n such that

λi = µi

for i 6= 1, 2n.

Remark 6.3. Theorem 6.2 defines a relation between the nontrivial spectra of graphs for
complementary choices of S. Moreover, Example 5.10 shows that for a k-regular graph
G(G,H, S), there can be more than one (n− k)-regular G(G,H, S′) graph with the same
nontrivial spectrum. In fact, if we find one, by using Proposition 4.4 with right actions
of H we can obtain families of graphs with the same nontrivial spectrum.

Recall that a Ramanujan graph is a connected k-regular graph with the property

|µ| 6 2
√
k − 1,

for any eigenvalue µ different from ±k.

Corollary 6.4. Suppose that [G : H] = 2. Then a nontrivial regular connected pair-graph
G(G,H, S) is a Ramanujan graph when

|S| > n+ 2− 2
√
n,

Proof. By Theorem 6.2, any k-regular pair-graph G(G,H, S) has nontrivial eigenvalues
µ satisfying |µ| 6 min{k, n− k}. Also, the pair-graph G(G,H, S) is a Ramanujan graph
when said trivial eigenvalues satisfy |µ| 6 2

√
k − 1. Considering the two inequalities, it

follows that all k-regular pair-graphs G(G,H, S) with k 6 2 or k > n + 2 − 2
√
n are

Ramanujan graphs.
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Figure 10: The Ramanujan pair-graph G(S4, A4, S) and its complementary pair-graph G(S4, A4, (S4 −
A4)− S)

Example 6.5. Let G = S4, H = A4. The set S = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4),
(1, 3, 2, 4), (1, 4, 2, 3), (1, 4, 3, 2)} is such that |S| = 8 satisfy the bound of Corollary 6.4,
so the corresponding G(G,H, S) graph is Ramanujan. Its spectrum consist of ±8 with
multiplicity 1, ±

√
7 with multiplicity 2, ±

√
3 with multiplicity 6 and 0 with multiplicity

6.
The corresponding complementary 4-regular graph, generated by S′ = {(2, 3), (1, 2, 3, 4),

(1, 2, 4, 3), (1, 3, 4, 2)} is also a Ramanujan graph. Therefore, the result of Corollary 6.4
is not a necessary condition. The pair-graphs are shown in Figure 10.

Since for a group G with a subgroup H of index 2, the class of regular connected
(bipartite) pair-graphs G(G,H, S) is an strict superset of that of bipartite connected
Cayley graphs G(G,S), Corollary 6.4 results in Ramanujan graphs that are not Cayley
graphs for the given group. This is the case for the pair-graphs in Example 6.5, as neither
of the generating sets, S or S′, is symmetric.

Appendix A. Relation with group-subgroup matrices

The motivation for the group-subgroup pair graph comes from the extension of
the group determinant for group-subgroup pairs, called wreath determinant for group-
subgroup pairs. In this appendix we show how one can relate the adjacency matrix of
a Cayley graph with the group matrix of the corresponding group; then, by extending
the idea for the matrix used for the wreath determinant for group-subgroup pairs we
obtain the rows corresponding to the subgroup on the adjacency matrix of a certain
group-subgroup pair graph, which is enough to determine the complete adjacency graph.

For a group G = {g1, . . . , gn}, consider a polynomial ring R containing the indeter-
minates xgi , for gi ∈ G, then the group matrix is a matrixM(G,φ) in Matn,n(R) defined
by

M(G,φ)i,j = xg−1
i gj

for i, j ∈ [n] and where φ : G → [n] is an enumeration function for G, used implicitly.
The determinant Θ(G) of the group matrix is called group determinant of G and does
not depend on the chosen enumeration of the elements of G. Note that for i, j we have
(g−1
i gj)

−1 = g−1
j gi, therefore for any element xg, the corresponding transpose element is

xg−1 .
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Similarly, for a group G of order kn, and subgroup H of order n we define the matrix
M(G,H, φ, τ) ∈ Matn,kn(R) by

M(G,H, φ, τ)i,j = xh−1
i gj

,

for hi ∈ H, gj ∈ G, i ∈ [n], j ∈ [nk] and where φ : G → [nk] and τ : H → [n]
are enumerations functions for G and H. Note that by considering only the columns
corresponding to elements of H of the matrixM(G,H, φ, τ) one obtains the group matrix
of H with respect to the orderings τ and φ|H .

For a matrix A ∈Mn,kn, the wreath determinant of A is defined as

wrdetk(A) = det−
1
k (A[k]),

where A[k] is the row k-flexing of the matrix A and detα is the α-determinant. Note that
wreath determinant is defined for rectangular matrices where the number of columns
(resp. rows) is a multiple of the number of rows (resp. columns). For an extensive
exposition of the wreath determinant and its properties the reader is referred to [5]. In
the paper [4], the authors define the wreath determinant for the pair G and H by

Θ(G,H, φ, τ) = wrdetk(M(G,H, φ, τ)).

In contrast with the ordinary group determinant, this wreath determinant for G and H
depends on the enumeration functions φ and τ .

For a given group G and symmetric subset S, by evaluating the corresponding group
matrix M(G,φ) by the rule

xg =

{
1 if g ∈ S
0 if g 6∈ S , (A.1)

one obtains a symmetric matrix. Furthermore, since g−1
i gj = s implies gis = gj , the

corresponding matrix is the adjacency matrix of the Cayley graph G(G,S).

Example Appendix A.1. Consider S3, the symmetric group on three letters with the
ordering φ given by S3 = {e, (2, 3), (1, 2), (1, 2, 3), (1, 3, 2), (1, 3)}, the group matrix is

M(S3, φ) =


x1 x2 x3 x4 x5 x6

x2 x1 x4 x3 x6 x5

x3 x5 x1 x6 x2 x4

x5 x3 x6 x1 x4 x2

x4 x6 x2 x5 x1 x3

x6 x4 x5 x2 x3 x1

 ,

where xi stands for xgi . Set S = {(1, 2), (1, 2, 3), (1, 3, 2)}, then evaluating by the rule
(A.1) we get

A =


0 0 1 1 1 0
0 0 1 1 0 1
1 1 0 0 0 1
1 1 0 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0

 ,

which can be verified to be the adjacency matrix of the Cayley graph G(S3, S).
22



Figure A.11: The Cayley graph G(S3, S).

Likewise, for group G, subgroup H and subset S as in definition 1.1, by evaluating
the matrix M(G,H, φ, τ) using the rule (A.1) we obtain a matrix with nonzero entries
(i, j) when h−1

i gj = s ∈ S. In other words, there are ones in the matrix exactly when
his = gj , which is the relation for the edges of the group-subgroup pair graph G(G,H, S)
in definition 1.1. The resulting matrix corresponds to the rows associated with the
elements of H in the adjacency matrix of the pair-graph G(G,H, S) and can be completed
by symmetry to obtain the complete adjacency matrix.

Example Appendix A.2. Let G = Z/12Z, H = {0̄, 3̄, 6̄, 9̄}, and S = {2̄, 4̄, 5̄, 7̄, 8̄} as
in Example 2.1, the corresponding matrix with respect to natural orderings φ and τ is

M(Z/12Z, H, φ, τ) =
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x9 x10 x11 x0 x1 x2 x3 x4 x5 x6 x7 x8

x6 x7 x8 x9 x10 x11 x0 x1 x2 x3 x4 x5

x3 x4 x5 x6 x7 x8 x9 x10 x11 x0 x1 x2

 .

Then, evaluating using (A.1), we get

A =


0 0 1 0 1 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1 1 0 1 1
0 1 1 0 0 0 0 0 1 0 1 1
0 1 1 0 1 1 0 0 0 0 0 1

 ,

which can be verified to correspond to the rows associated with elements of H in the
adjacency matrix of the pair-graph G(Z/12Z, H, S) of Example 2.1.

Note that in order to be able to complete the matrix by symmetry it is necessary that
SH = S ∩ H is symmetric, otherwise the submatrix corresponding to elements of H is
not symmetric. Also, when the group matrix is defined by (xgig−1

j
) the resulting Cayley

graph is defined by left multiplication, the same is true for the group-subgroup matrix
for the wreath determinant and the group-subgroup pair graph.

Appendix B. Linear error-correcting codes

One of the problems of information theory is that of transmission of information
reliably over a noisy channel. We will consider only the binary symmetric channel, that
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is, the information is represented by elements of Fl2 for some positive integer l and each
bit is flipped during transmission with a given probability p. In order to correct the error
on the transmission the source message m ∈ Fk2 is encoded into a codeword c ∈ Fn2 with
n ≥ k by adding redundancy, in other words,

c = Gm

for some transformation G. The redundancy added is used by the decoder to recover
a decoded message m̂ ∈ Fk2 from the received message r ∈ Fn2 . The transmission is
successful if m and m̂ are (approximately) equal. The ratio k

n of the lengths of the
source message and the codeword is called information rate of the code.

When the transformation G is linear, we say that the code is linear. In practice,
a linear code C of type (n, k) is a k dimensional F2-vector subspace of Fn2 . The code
corresponds to the image of G in the foregoing discussion. The matrix representation
G ∈ Matk,n(F2) of G is called the generator matrix of the code, and any matrix H ∈
Matn−k,n(F2) such that

HtG = 0

is called a parity-check matrix of the code. Therefore, the parity-check matrix can be
interpreted as a set of linear conditions that an element t ∈ Fn2 must satisfy in order to
be an element of C. It is clear then that a linear code C is determined by its parity-check
matrix.

The Tanner graph T of C is a graph that represents the parity-check matrix of a linear
code C. The vertices of T consist of two sets P and C. Each vertex p of P represents a
parity-check condition of the code and each vertex c of C represents a bit of the codeword,
in other words, they represent rows and columns of H, respectively. The vertices p and c
are adjacent if the corresponding entry of H is nonzero, it follows that the Tanner graph
T is a bipartite graph. Conversely, from a bipartite graph G one may define a linear
code C by taking as P and C the bipartition of the vertices. If the cardinalities of P and
C are n and l, respectively, the associated code is a (n − l, n)-type code. For detailed
information on linear codes and Tanner graphs, the reader is referred to [7] or [10].

For a group G, subgroup H of index [G : H] > 2 and generating set S with SH = ∅,
the corresponding pair-graph G(G,H, S) is bipartite. The code associated with the pair-
graph G(G,H, S), denoted by C(G,H, S), is a (|G| − 2|H|, |G − H|, 2)-type code with

information rate r = [G:H]−2
[G:H]−1 . The parity-check matrix H of this code is the submatrix

of the adjacency matrix of C(G,H, S) corresponding to the rows associated with elements
H and the columns associated with elements G−H.

Example Appendix B.1. Consider G = Z/20Z, H ' Z/5Z the subgroup of index
[G : H] = 4 and S = {1̄, 2̄, 3̄, 7̄, 9̄}. In this case, the rate of the resulting code C(G,H, S)
is r = 3

4 . The resulting pair-graph G(G,H, S) and the Tanner graph representation of
the resulting code are shown in Figure B.12.

The class of low-density parity check (LDPC) codes, or Gallager codes, consists of
linear codes with sparse parity-check matrices, or equivalently, with sparse graph rep-
resentation. Gallager codes are good codes in the sense of minimum distance between
codewords. Gallager codes are divided into regular, where the vertices in each partition
have the same degree, and irregular, with no restriction on the degree of the vertices.
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Figure B.12: The Tanner graph representation of the code

Irregular Gallager codes are known to perform better than regular ones at decoding [9].
From the results of Section 2.1 one can see that both regular and irregular Gallager
codes may be modeled using group-subgroup pair graphs. Moreover, the sparsity of the

code C(G,H, S) may be measured by |S|
|G−H|−|H| , the proportion of nonzero entries of the

associated parity-check matrix.

Example Appendix B.2. Set G = GL2(F5), where F5 is the finite field of 5 elements
andH = SL2(F5), then for a particular subset S of 7 elements taken from the complement
of H in G, we obtain the pair-graph G(G,H, S) shown in Figure B.13. The resulting pair-
graph is a connected graph consisting of 480 vertices of degrees 2, 3 and 7. This pair-graph
is associated with a (240, 360)-type code C(G,H, S) of rate 2

3 and with a proportion on
nonzero entries on the parity-check matrix of 7

360 ≈ 0.019.

Figure B.13: The pair-graph G(GL2(F5), SL2(F5), S).

According to the general theory, Gallager codes associated with group-subgroup pair
graphs are good in the sense of minimum distance, nevertheless it would be desirable
to study the performance of encoding and decoding for particular choices of group G,
subgroup H and generating set S.

25



Acknowledgments

The author was supported during the duration of the research by the Japanese Gov-
ernment (MONBUKAGAKUSHO: MEXT) Scholarship and partially by JST CREST.

The author would like to express his gratitude to Masato Wakayama for providing
guidance, support and motivation for the present work. The author is also very grateful
to Kazufumi Kimoto for the comments and suggestions on a preliminary version of this
paper. Additionally, the author would like to thank the anonymous referee for the careful
reading, comments and for pointing out a mistake on Theorem 4.5 and giving a suggestion
for the correction.

The computations and diagrams were elaborated using Mathematica 9.0 Student
Edition. The source files for the diagrams can be downloaded from

http://www2.math.kyushu-u.ac.jp/˜ma213054/files/figures.nb.

References

[1] Norman Biggs. Algebraic Graph Theory. Cambridge Mathematical Library, 1996.
[2] H. S. M. Coxeter and W. O. J Moser. Generators and Relations for Discrete Groups, volume 14 of

Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Berlin Heidelberg, 1972.
[3] Guiliana Davidoff, Peter Sarnak, and Alain Valette. Elementary Number Theory, Group Theory

and Ramanujan Graphs. Cambridge University Press, London Mathematical Society student texts;
55, 2003.

[4] Kei Hamamoto, Kazufumi Kimoto, Kazutoshi Tachibana, and Masato Wakayama. Wreath deter-
minants for group-subgroup pairs. Journal of Combinatorial Theory, Series A, 133:76–96, 2015.

[5] Kazufumi Kimoto and Masato Wakayama. Invariant theory for singular α-determinants. Journal
of Combinatorial Theory, Series A, 115:1 – 31, 2008.

[6] Ulrich Knauer. Algebraic Graph Theory: morphisms, monoids, and matrices. De Grutier studies
in mathematics ; 41, 2011.

[7] Dave K. Kythe and Prem K. Kythe. Algebraic and Stochastic Coding Theory. CRC Press, 2012.
[8] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261–277, 1988.
[9] M. Luby, M. Mitzenmacher, D. Spielman M.A. Shokrollahi, and V. Stemann. Practical loss-resilient

codes. Proceedings of the 29th annual ACM Symposium on Theory of Computing, pages 150–159,
1997.

[10] David J.C. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge Univer-
sity Press, 2003.

[11] G. A. Margulis. Explicit group-theoretical constructions of combinatorial schemes and their applica-
tions to the design of expanders and concentrator. Journal Problems of Information Transmission,
24,1:51–60, 1988.

[12] Toshikazu Sunada. Fundamental groups and Laplacians. Proc. Taniguchi Symp. ”Geometry and
Analysis on Manifolds”, Springer Lect. Notes in Math., 1339:248–277, 1987.

26

http://www2.math.kyushu-u.ac.jp/~ma213054/files/figures.nb

	Introduction 
	Examples and basic properties 
	Degree structure of group-subgroup pair graphs

	Connectedness of group-subgroup pair graphs
	Connectedness
	Connected Components

	Further properties of group-subgroup pair graphs
	Vertex transitivity and group actions
	Bipartite group-subgroup pair graphs
	Some remarks on infinite pair-graphs

	Spectra of group-subgroup pair graphs
	A set of apparent eigenvalues of a group-subgroup pair graph
	Eigenfunctions for nontrivial eigenvalues

	Spectra of regular pair-graphs and Ramanujan graphs
	Relation with group-subgroup matrices
	Linear error-correcting codes

