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Abstract

In this thesis we introduce a new type of graph for group-subgroup
pairs (G,H) and subsets S ⊂ G that naturally extends Cayley graphs.
We show the elementary properties of such graphs, including connect-
edness, degree and partition structure, and vertex-transitivity, relating
these properties with those of the underlying group-subgroup pair. A
subset of the spectrum of these graphs, that includes the largest eigen-
value, can be determined from the properties of the group, subgroup and
subset. We also present a sufficient condition on the group-subgroup pair
(G,H) and the size of S that results on bipartite Ramanujan graphs.
Among these Ramanujan graphs, there are some that cannot be ob-
tained as Cayley graphs. As another application, we propose the use of
group-subgroup pair graphs to model linear error-correcting codes.
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Introduction

The simplicity of the definition of a graph is the main reason graph theory
has found applications in many areas of mathematics. It is just a graphical
representation of the relations on a set. The properties of graphs have been
studied from different points of view: combinatorial, algebraic and topological,
among others.

Regular graphs are of central importance in graph theory and applications.
A regular graph is one whose vertices have the same degree, that is, every
vertex has the same number of adjacent vertices. Regular graphs have many
symmetries, in other words, they have a rich group of graph automorphisms.
For instance, for regular graphs we can find groups of automorphisms that act
transitively on the vertices, this means that we can think of a regular graph
as a homogenous space for a certain group. On the other hand, one can start
with a group and a subset of the group and obtain the associated Cayley graph,
which is also a regular graph.

In this work, we introduce a Cayley-type graph for a group and subgroup
pair and subset, which we call the group-subgroup pair graph. The motivation
for the definition comes from a recent paper [6] on the extension of the group
determinant for group-subgroup pairs using the wreath determinant arising
from the invariant theory of the α-determinant [8]. This contruction of wreath
determinant suggests a natural definition of the group-subgroup pair graph, a
note on the connection between the two concepts is provided in Appendix A.

The resulting group-subgroup pair graph is not a regular graph, but rather
a multi-regular graph. The degree of the vertices depends on the cosets of
the subgroup. The results on vertex structure of the group-subgroup pair
graphs are given in in Section 2.1. The conditions for the connectedness of the
graph and for it to be bipartite are described in Section 2.3, along with other
basic properties. Additionally, we present in Section 2.4 structure theorems for
connected group-subgroup pair graphs. In the simplest case, the pair-graph
is isomorphic to a factor graph of the barycentric division of a Cayley graph.
The structural properties of graphs according to the choice of subset S and the
index of the subgroup are shown in Figure 0.1.

For group-subgroup pair graphs, there is a subset of the spectrum of the
graph that is apparent from the properties of the group, subgroup and gener-
ating set. This corresponds to the trivial eigenvalues of regular graphs and to
the zero eigenvalue with prescribed minimal multiplicity. The description of
these apparent eigenvalues and their eigenfunctions is given in Section 2.5.

We present several applications: to the construction of Ramanujan graphs,
to the design of linear error-correcting codes and the computation of eigenvalues
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Figure 0.1: Families of group-subgroup pair graphs.

of graphs with particular structure. A Ramanujan graph is a k-regular graph
that satisfies

∣µ∣ ⩽ 2
√
k − 1,

where µ is any nontrivial eigenvalue. This formulation is equivalent to the
“Graph Theoretical Riemann Hypothesis” for the Ihara zeta function associ-
ated to the graph, as first explained by Sunada in [16]. Ramanujan graphs are
the expander graphs that are optimal from the spectral point of view. The orig-
inal construction of families of Ramanujan graphs was presented by Lubotzky,
Phillips and Sarnak in [11] and independently by Margulis in [14]. In Section
3.1 we show that regular group-subgroup pair graphs satisfying

∣S∣ ⩾ ∣H ∣ + 2 − 2
√

∣H ∣,

are Ramanujan graphs. In particular, using this result we can obtain bipartite
Ramanujan graphs that do not arise as Cayley graphs for the given group.

The second application is to the design of linear codes. Coding theory stud-
ies the problem of reliably communicating information over a noisy channel.
This is done by adding redundancy to messages to generate codewords, which
are later decoded. When a linear transformation is used to generate codewords,
the codes are called linear. Linear codes can be represented by means of a bi-
partite graph, the Tanner graph of the code. Conversely, a bipartite graph
may be used to model linear codes. We propose the use of group-subgroup
pair graphs for the modeling of linear codes due to their structural properties.
Some of the basic ideas are sketched in Section 3.2. The final application is the
computation of the full spectrum of generalized cycle graphs, using the struc-
ture theorems for group-subgroup pair graphs and the representation theory of
the subgroup H.

The contents of this work are based on the preprint article [15].



Chapter 1

Preliminaries

In this section we introduce the preliminary results and notations necessary for
the rest of the text.

1.1 Graph theory

A finite graph G is a pair (V,E) consisting of a finite set of vertices V and a
relation given by E ⊆ V × V . We will consider only graphs where the relation
is symmetric, in this case we write x ∼ y when (x, y) ∈ E and we say that the
vertices x and y are adjacent and that the graph G is undirected. If the relation
is not reflexive, x /∼ x for any vertex x, we say that the graph contains no loops.

The degree of a vertex x is defined as the cardinality of the set

{(x, y) ∈ E ∣ y ∈ V }.

A graph G consisting of vertices of uniform degree k is called a k-regular graph.
A path is a finite sequence x0, x1, . . . , xn of vertices such that xi ∼ xi+1 for
i ∈ {1,2, . . . , n − 1}, if x0 = xn the path is called a cycle. A connected graph
G is one where any two vertices x, y have a path x0, x1, . . . , xn with x0 = x
and xn = y. If we make the convention that a vertex x has a path x0 = x
connecting it with itself, the relation of having a path is an equivalence relation
on the vertices of the graph. The resulting equivalence classes are the connected
components of the graph and the graph is connected when it only has one
connected component.

A bipartite graph is a graph G along with a function b ∶ V → {0,1} such that
the image E′ under b of the relation E is not reflexive. In other words, there
is a partition of the vertices V = V1⊍V2 G such that any two vertices in the
same set are not adjacent.

The space L(G) consists of functions f ∶ V → C, if the graph is not finite
additional convergence conditions may be imposed to the functions in that
space. Associated to a graph G there is an adjacency operator A acting on
L(G) described by

Af(x) = ∑
x∼y

f(y).

The matrix representation A of the adjacency operatorA is called the adjacency
matrix of the graph.
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CHAPTER 1. PRELIMINARIES 4

Let G = (V,E) be a graph, the barycentric division G(2) of the graph G is
the graph with set of vertices V ∪E and in which two vertices x ∈ V , (y, z) ∈ E
are adjacent if x = y or x = z. These are the only edges of the graph, therefore
the sets V and E are a bipartition of G(2).

The spectrum of a graph

The spectrum Spec(G) of a graph G is just the spectrum of the associated
adjacency operator A. The spectrum of a graph reflects certain combinatorial
properties of the graph. The results of this section will be stated without proof,
but the proofs can be found in any standard text such as [1] or [9].

Proposition 1.1.1. Let G be a simple graph without loops. Then the following
are equivalent:

1. G is a bipartite graph.

2. There are no cycles of odd length in G.

3. SpecG is symmetric about 0.

We denote by ρ(G) the spectral radius of the graph G. The following results
relate the spectral radius of a graph with various combinatorial properties.

Proposition 1.1.2. If the graph G is k-regular, then

ρ(G) = k

The eigenvalue k of a k-regular graph G is usually called the trivial eigen-
value of the graph. If the graph is bipartite, then −k is also called trivial
eigenvalue.

Proposition 1.1.3. The graph G is connected if and only if the multiplicity
of ρ(G) is one. If the graph is k-regular, the multiplicity of ρ(G) = k is the
number of connected components of G.

A graph is called vertex transitive when for any pair of different vertices x
and y there is graph automorphism ϕ such that ϕ(x) = y.

1.2 Cayley graphs

A Cayley graph is graph constructed from a group G and where the relation
between vertices is obtained from a generating set S using the group operation.
The graphs were introduced by Arthur Cayley in 1878 [2].

A subset S of a group G is said to be symmetric if it contains the inverse
of all of its elements, that is, if S = S−1 .

Definition 1.2.1. Let G and S ⊆ G a symmetric subset. A Cayley graph
G(G,S) is a graph with set of vertices G and where g, h ∈ G are adjacent if
there is an element s ∈ S such that

h = gs.
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In the notation of the previous section, g ∼ h if g−1h ∈ S. There is no
generally accepted notation for Cayley graphs, and sometimes the notation
Cay(G,S) is used, also sometimes the generating set is called Cayley set.

It can be seen from the definition that a Cayley graph G(G,S) is regular,
and the degree of its vertices is the cardinality of the generating set S.

Proposition 1.2.2. A Cayley graph G(G,S) is connected if and only if

⟨S⟩ = G.

When the graph is not connected, the connected components are given by left
cosets of ⟨S⟩.

In other words, the graph is connected if the generating set S generates the
group G. The group G naturally acts on itself via left translations, therefore
this extends to a graph bijection that preserves the edges. It is clearly a graph
automorphism. Moreover, since we can find one such automorphism that takes
any vertex into any other, we have:

Proposition 1.2.3. A Cayley graph G(G,S) is vertex transitive.

In his 1878 article, Arthur Cayley introduces the graph as a mean of repre-
senting a group and gives the example with the symmetric group of 4 letters.
In that article, the role of the generating set S above is taken by a minimal set
of generator of the group G. With respect to the paths (routes) in the graph
he writes:

“We hence see that a route applied in succession to the whole
series of initial points or letters abcdefghijkl, gives a new arrange-
ment of these letters, wherein no one of them occupies its original
place; a route is thus, in effect, a substitution. Moreover, we may
regard as distinct routes, those which lead from a to a, to b, to c,
. . . to l,respectively.”

This is, of course, the statement of the vertex transitivity of the graph.
One of the most important properties of Cayley graphs is that for abelian

groups we can compute the eigenvalues using representation theory.

Theorem 1.2.4. Let G be an abelian group. Then the eigenvalues of the
Cayley graph G(G,S) are given by

λi = ∑
s∈S

χi(s),

where χi are the irreducible characters of G.

There are several proofs of this result, for a proof using the Fourier trans-
form, the reader is referred to [17].



Chapter 2

Group-subgroup pair graphs

The aim of this work is to introduce a new type of graph, constructed from a
group G, a subgroup H ⊆ G, and a subset S ⊆ G, that is a generalization of
Cayley graphs, study its structural properties and present some applications.

2.1 Definition and basic properties

Definition 2.1.1. Let G be a group, H a subgroup of G and S ⊆ G a subset
such that S ∩ H is a symmetric subset of G. The Group-Subgroup Pair
Graph G(G,H,S) is the undirected graph with vertices G and simple edges
given by

(h,hs) ∀h ∈H, ∀s ∈ S.
We use the term pair-graph as a synonymous for group-subgroup pair-graph.

In terms of relations, we see that a pair (h, g) ∈H ×G or (g, h) ∈ G×H is an
edge if and only if h−1g ∈ S. On the other hand, pairs (g, g′) with g, g′ ∉H are
not edges. When the group and the subgroup coincide the definition reduces
to that of a Cayley graph.

With the exception of Section 2.3 all groups are assumed to be finite, and e
always represents the identity of a given group G. The notation [k] is used for
the set {1,2, . . . , k} for k ∈ N. For a given group G, subgroup H and symmetric
subset S we denote by SH and SO the subsets of G given by

SH ∶= S ∩H,
SO ∶= S −H.

Additionally, if H is a subgroup of index k+1 of G, we will frequently consider
a set of representatives of the cosets, denoted by

{x0 = e, x1, . . . , xk},

and a partition of SO given by sets

Si ∶= S ∩Hxi,

for 0 ≠ i ∈ [k].
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CHAPTER 2. GROUP-SUBGROUP PAIR GRAPHS 7

It follows directly from Definition 2.1.1 that the pair graph G(G,H,S) con-
tains the Cayley graph G(H,SH) as a subgraph. Therefore, the class of Cayley
graphs is contained in the class of group-subgroup pair graphs. When the gen-
erating subset S is empty, we say that the resulting pair-graph G(G,H,S) is
trivial.

Example 2.1.2. Let G = Z/12Z, H = {0̄, 3̄, 6̄, 9̄}, and S = {2̄, 4̄, 5̄, 7̄, 8̄}. The
corresponding pair-graph G(G,H,S) is shown on Figure 2.1.
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Figure 2.1: The pair-graph G(Z/12Z,H,S).

We list some facts that follow from the definition that are used frequently
in the paper.

• All the vertices in S are adjacent to the identity e ∈H.
• A vertex x ∈ G −H is incident to the edge (x,xs−1) for any s ∈Hx ∩ SO.
• Two vertices x, y ∈ G −H are not adjacent.
• If (x, y) is an edge, then (hx,hy) is also an edge of the graph, for any
h ∈H.

Example 2.1.3. Let K = F72 , the finite field of 72 elements, and H = F7 the
prime field of K considered as a subgroup of the additive group K. Then K
is the direct sum of seven copies of H. Let ϕ be the norm map of K as a field
extension of H, then if S = ϕ−1({5̄, 6̄}), we obtain the pair-graph G(K,H,S)
shown in Figure 2.2. The pair-graph G(F72 ,F7, S) contains vertices of degree
2, 4 and 16.

Note that the graphs of the above examples are not Cayley graphs for any
group, specifically, none of the graphs above are regular.

Remark 2.1.4. We briefly mention another generalization of Cayley graphs for
group G and subgroup H, the Schreier Coset Graph. For a symmetric subset
S of G, the Schreier coset graph is defined as the graph with the set H/G of
cosets as vertices and where two cosets Hx and Hy are adjacent when there is
an s ∈ S such that

Hxs =Hy.
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Figure 2.2: The pair-graph G(F72 ,F7, S).

A Schreier Coset graph can have multiples edges and loops (even when e ∉ S).
The Schreier coset graphs have been used for coset enumeration techniques,
a detailed exposition can be found in [3]. For a given group G, the Schreier
Coset graph is a Cayley graph when H = {e}, whereas the group-subgroup pair
graph is a Cayley graph when H = G.

Degree structure of group-subgroup pair graphs

An isolated vertex is one that is not connected to any other vertex. In con-
trast with Cayley graphs, group-subgroup pair graphs may contain isolated
vertices even when the generating subset is not empty. The following result
characterizes the presence of isolated vertices in group-subgroup pair graphs.

Proposition 2.1.5. i) The pair-graph G(G,H,S) contains no isolated vertices
if and only if S contains a representative for each coset of H on G other than
He =H.

ii) The vertices H are isolated in G(G,H,S) if and only if S is the empty
set.

Proof. Suppose S contains a representative for each coset other than H, then
take x ∈ G −H, and s ∈ S the representative of Hx, then there is h ∈ H such
that hs = x, and therefore x is connected to h. Conversely, if there are no
isolated vertices, by the definition we must have HSO = G −H. The second
statement follows directly from the definition.

Example 2.1.6. Let G be any group of order n and H = {e}. The pair-graph
G(G,H,S) with S = G−H contains no isolated vertices. In fact, G(G,H,S) is
a Tn−1 star graph, as shown in Figure 2.3.

A graph in which all the vertices have the same degree is called a regular
graph. More precisely, if all the vertices have degree k the graph is called k-
regular graph. An important property of a Cayley graph G(G,S) is that it is
∣S∣-regular. Example 2.1.2 shows that this is not true in general for group-
subgroup pair graphs, but there is still uniformity on the degree of the vertices
within each coset.
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Figure 2.3: The pair-graph G(G,{e}, S) with ∣G∣ = 6 and S = G − {e}.

Proposition 2.1.7. In a pair-graph G(G,H,S), all the vertices in the same
coset have the same degree. Namely, the vertices in H have degree ∣S∣ and for
x ∉H the degree of the vertices in the coset Hx is ∣S ∩Hx∣.

Proof. It is clear from the discussion following Example 2.1.2 that any two
vertices x, y ∈ G −H in the same coset Hx have the same degree ∣Hx ∩ SO ∣ =
∣Hy ∩ SO ∣. The vertices in H have degree ∣S∣ by construction.

A graph with a partition of the vertices V1, V2, . . . , Vr such that the degree
of the vertices on each partition is constant is called a multi-regular graph or
p1, p2, . . . , pr-regular graphs, where pi is the degree of the vertices on a given
partition. The above proposition shows that pair-graphs in general are multi-
regular graphs.

Returning to Example 2.1.2, (H + 1̄)∩S = {4̄, 7̄}, (H + 2̄)∩S = {2̄, 5̄, 8̄} and
∣S∣ = 5. The cardinality of these sets corresponds to the degree of the vertices in
the respective cosets and the corresponding pair-graph is then a 2,3,5-regular
graph.

Corollary 2.1.8. Let G be a group, H a subgroup of index [G ∶H] = k+1 and
S a subset of G with SH symmetric. Then for h ∈H,

deg(h) ⩾
k

∑
i=1

deg(xi), (2.1)

in G(G,H,S). The equality holds when SH is empty. In particular, a nontrivial
pair-graph G(G,H,S) is regular if and only if SH = ∅ and [G ∶H] = 2, or when
[G ∶H] = 1.

Proof. Since deg(h) = ∣S∣ and ∑ki=1 deg(xi) = ∑ki=1 ∣Si∣ = ∣SO ∣ by Proposition
2.1.7, the inequality follows since ∣S∣ ⩾ ∣SO ∣, and the equality is equivalent to
SH = ∅. The if part of the proof follows directly from the inequality and the
definitions. For the only if part, consider a j-regular pair-graph G(G,H,S),
then by Proposition 2.1.7, ∣S∣ = j and ∣Hx ∩ SO ∣ = j for x ∉ H. It follows from
inequality (2.1) that ∣SO ∣ = kj = k∣S∣ and therefore k is necessarily 0 or 1. If
k = 1, then [G ∶ H] = 2 and ∣SO ∣ = ∣S∣, so S = SO and the case k = 0 gives
[G ∶H] = 1.
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Note that in view of Proposition 2.1.7, we can consider deg(Hx) as the
degree of any of the elements of the coset. In that case, the above identity can
be written as

deg(H) ⩾∑
i

deg(Hxi),

with equality happening when SH is empty. The preceding discussion shows
that the structure of H/G, the set of cosets of H on G, is closely related to the
degree structure of the graph, this is also the case for the eigenvalues of the
graph, as described in Section 3.1.

Proposition 2.1.9. Let G be a group, H a subgroup with [G ∶ H] = 2, and
S a subset of G such that G(G,H,S) is a nontrivial regular pair-graph. If
S is a symmetric set, the pair-graph G(G,H,S) is a Cayley graph. Namely,
G(G,H,S) = G(G,S).

Proof. The conditions imply that SO = S, then by the definition of the pair-
graph the edges are given by

(h,hs),∀h ∈H, ∀s ∈ S and (x,xs−1),∀x ∈ (G −H), ∀s ∈ S.

Since S is symmetric one can simply write (x,xs), ∀x ∈ G, ∀s ∈ S, which is the
definition of Cayley graph.

Example 2.1.10. If R is a ring we denote by H(R) the ring of quaternions
with coefficients in R. Take p and q odd prime numbers with q > 2

√
p such that

p is not a square modulo q. Consider the set Sp ⊂ H(Z) of integer quaternions

α = a0 + a1i + a2j + a3k

of norm p with a0 ≥ 0 such that α ≡ 1(mod 2) or α ≡ i + j + k(mod 2). It is
known that there are p + 1 such integer quaternions. Let τ ∶ H(Z) → H(Fq)
be the reduction modulo q, ψ be the embedding of H(Fq) into M2(Fq) and
ϕ the canonical homomorphism of GL2(q) onto PGL2(q). Set S = (ϕ ○ ψ ○
τ)(Sp), then the pair-graph G(PGL2(q), PSL2(q), S) is a connected bipar-
tite (p + 1)-regular graph. Moreover, the set S is symmetric and the pair-
graph G(PGL2(q), PSL2(q), S) is actually the Ramanujan Cayley graph Xp,q

of Lubotzky, Phillips and Sarnak [11].

2.2 Connectedness of group-subgroup pair graphs

Connectedness

In this section we discuss the connectedness of group-subgroup pair graphs.
Recall that a Cayley graph G(G,S) is connected if and only if ⟨S⟩ = G. We
begin by considering the case where SH is empty, in other words, none of the
vertices of H are adjacent in G(G,H,S).
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Lemma 2.2.1. Let G be a group, H a subgroup and S ⊂ G a subset with
SH = ∅. The vertices of H in the pair-graph G(G,H,S) are in the same
connected component if and only if ⟨H ∩ (SS−1)⟩ =H.

Proof. If ⟨H ∩ (SS−1)⟩ = H, then it suffices to prove that the identity e is
connected to an arbitrary h ∈H. For h ∈H, we have h = s1s

−1
2 . . . sn−1s

−1
n with

sis
−1
i+1 ∈ H, then if we set h1 = s1s

−1
2 . . . sn−3s

−1
n−2, h1 is adjacent to h1sn−1 = x1

and h is adjacent to hsn = h1sn−1 = x1 so h1 is connected to h. By repeating
this process we conclude that e is connected to h.

On the other hand, if in the graph G(G,H,S) all the vertices of H are in
the same connected component, any h ∈ H is connected to e ∈ H. Since there
are no direct connections between two elements of H or G −H, there must be
path from e to h where every even vertex is an element of H, so we have a
sequence h0 = e, h1, . . . , hn−1, hn = h of elements of H, where hi and hi+1 are
adjacent to xi ∈ G −H for i = 0,1,2, . . . , n − 1. That is, we have a sequence of
edges (h0, x0), (x0, h1) . . . (hn−1, xn−1), (xn−1, hn), as shown in Figure 2.4.

....
h0 hn

xn−1

hn−1

x0

h1

x1

h2

Figure 2.4: The path from h0 to hn.

Then, for si ∈ S,

x0 = h0s0 , x0 = h1s1

x1 = h1s2 , x1 = h2s3

⋮ ⋮
xn−1 = hn−1s2n−2 , xn−1 = hn−1s2n−1

thus,

s0 = h0s0 = h1s1 h1 = s0s
−1
1

h1s2 = h2s3 h2 = h1s2s
−1
3

⋮ ⇒ ⋮
hn−1sn−2 = hns2n−1 h = hn−1sn−2s

−1
n−1,

it follows that sis
−1
i+1 ∈H and h ∈ ⟨H ∩ SS−1⟩.

Note that since a group-subgroup pair graph may contain isolated vertices,
the condition of the lemma alone is not sufficient for connectedness.

Proposition 2.2.2. Let G be a group, H a subgroup and S ⊆ G a subset with
SH = ∅. The pair-graph G(G,H,S) is connected if and only if

⟨H ∩ SS−1⟩ =H
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and S contains representatives of all the cosets of H other than H.

Proof. The result follows from Lemma 2.2.1, Proposition 2.1.5 and the obser-
vation that any vertex x ∈ G−H must be connected to some h ∈H which is in
turn connected to the identity e ∈H.

For the general result, we introduce the notation

S̃ ∶=H ∩ SS−1,

for a subset S of G −H.

Theorem 2.2.3. A pair-graph G(G,H,S) is connected if and only if

⟨SH ∪ S̃O⟩ =H

and S contains representatives of all the cosets of H other than H.

Proof. First we see that the vertices of H are in the same connected component
if and only if ⟨SH ∪ S̃O⟩ = H. The proof of this fact is the same as that of
Lemma 2.2.1 while considering that in the path from e ∈H to h ∈H there may
be edges connecting elements h1, h2 from H, in such case we have h2 = h1sH ,
with sH ∈ SH . Then the result follows like in Proposition 2.2.2.

Example 2.2.4. Let G = Z/12Z, H ≅ Z/4Z. Set S = {2̄, 8̄} and S′ =
{1̄, 2̄, 6̄, 7̄, 8̄}, the corresponding group-subgroup pair graphs are shown in Fig-
ure 2.5. Note that ⟨H∩SS−1⟩ = {0̄, 6̄} and ⟨S′H∪S̃′O⟩ = {0̄, 6̄}, so neither graph
is connected. Moreover, as there are no elements of the coset H+4̄ = {1̄, 4̄, 7̄, 1̄0}
on S, all the vertices of that coset are isolated on G(G,H,S).

0

1

2

3

4
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6

7

8

9

10

11

Figure 2.5: The pair-graphs G(G,H,S) and G(G,H,S′).



CHAPTER 2. GROUP-SUBGROUP PAIR GRAPHS 13

Connected Components

If a graph is not connected, the characterization of the connected components
of the graph is desirable. For Cayley graphs, the connected component of the
identity is the subgroup ⟨S⟩, and each of the cosets of ⟨S⟩ inG are the connected
components of the graph. This does not extend directly to group-subgroup pair
graphs, since the connected component of the identity may include vertices from
G−H. In particular, the subgroup ⟨SH ∪ S̃O⟩ of H is the subgroup of elements
of H that lie on the identity component. The cosets of this subgroup are the
intersection of H with certain connected components of the graph.

Proposition 2.2.5. Let U = ⟨SH ∪ S̃O⟩. Then the identity component Γe of
the pair-graph G(G,H,S) is U ∪ USO. The remaining connected components
of the pair-graph G(G,H,S) are either of the type Γh = hΓe for h ∈ H or the
type {x} for x ∈ G −H.

Proof. The first statement follows from the preceding discussion and the defini-
tion of the pair-graph G(G,H,S). Any path (e, g1, g2, . . . , gn) from the identity
e to gn corresponds uniquely to a path (h,hg1, . . . , hgn) from h to hgn so the
connected component of h ∈ H is Γh = hΓe. Take x ∈ G −H, if x is an isolated
vertex its connected component is {x}, otherwise it is connected to an h ∈ H
and its connected component is of the type Γh.

A consequence of the above proposition is that an arbitrary connected com-
ponent Γ of G(G,H,S) has cardinality equal to ∣Γe∣ or 1. Moreover, for first
case, we also have ∣Γ ∩H ∣ = ∣Γe ∩H ∣ and ∣Γ −H ∣ = ∣Γe −H ∣.

For Cayley graphs, the number of connected components of the graph is
the index [G ∶ ⟨S⟩]. The existence of isolated vertices even for nontrivial pair-
graphs makes the formulation slightly more complicated.

Theorem 2.2.6. The number of connected components of G(G,H,S) is

[H ∶ ⟨SH ∪ S̃O⟩] + ∣G −H ∣ − ∣HSO ∣. (2.2)

Proof. By Proposition 2.2.5, the first term in the formula is the number of
connected components Γh that occur on H, the second and third terms count
the number of isolated points in G−H, by Proposition 2.1.5. Since there are not
edges between elements of G−H, this is the number of connected components
of the graph.

Proposition 2.2.5 and Theorem 2.2.6 completely characterize the connected
components for the pair-graphs G(G,H,S) for given group G, subgroup H and
valid subset S ⊂ G.

Example 2.2.7. For the pair-graph of Example 2.1.2 we have S = {2̄, 4̄, 5̄, 7̄, 8̄}.
Since h = 3̄ = 8− 5 ∈ S −S is a generator of H, the first term in formula (2.2) is
1, the second term is 8 and all the cosets are represented so the last term is 8,
resulting in 1 connected component. As for the pair-graphs generated by S and
S′ of Example 2.2.4, in both cases the first term is 2, the second term is 8, and
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the final term is 4 for the graph generated by S and 8 for the graph generated
by S′, therefore G(G,H,S) has 6 connected components and G(G,H,S′) has
two connected components as it is confirmed visually in the diagrams.

2.3 Further properties of group-subgroup pair graphs

Vertex transitivity and group actions

A graph is vertex transitive when for any pair of different vertices x and y there
is graph automorphism ϕ such that ϕ(x) = y. Cayley graphs are naturally
vertex transitive by means of left translations Lg with g ∈ G. Any vertex
transitive graph must be regular, therefore by Proposition 2.1.7, we have the
following result.

Proposition 2.3.1. Nontrivial pair-graphs G(G,H,S) are not vertex transitive
when [G ∶H] ⩾ 3 or when [G ∶H] = 2 and SH is not empty.

The left translation Lh by h ∈ H on G(G,H,S) is a graph isomorphism.
Clearly, for any pair of elements x, y of a coset Hx there is an h ∈H such that
Lh(x) = y. However, the left action by an arbitrary g ∈ G is not necessarily
a graph automorphism. For instance, in Example 2.1.2 the action of g = 1
is not a graph automorphism, as the image of 0 is 1, and degree(0̄) = 5, but
degree(1̄) = 2.

Let L(G) be the set of complex valued functions defined on the group G,
and consider λH ∶ H → GL(L(G)) the left permutation representation of H
given by the action λH(h)f(x) = f(h−1x) for h ∈H and x ∈ G.

Proposition 2.3.2. Let A be the adjacency operator for a group-subgroup pair
graph G(G,H,S), then for any h ∈H

λH(h)A = AλH(h).

Proof. Note that for the pair-graph G(G,H,S) and f ∈ L(G), the adjacency
operator is given by

Af(y) =
⎧⎪⎪⎨⎪⎪⎩

∑s∈S f(ys) if y ∈H
∑s∈S∩Hy f(ys−1) if y ∈ G −H

The result then follows from direct calculation using the fact that for any
x ∈ G and h ∈H, x and h−1x belong to the same coset.

For h ∈H, λH(h) is a permutation matrix for the elements of G correspond-
ing to the left multiplication by h. By Theorem 15.2 of [1], a bijection ϕ of
the vertices of a graph is a graph automorphism if MϕA = AMϕ, where Mϕ is
the permutation matrix associated with ϕ. Moreover, Proposition 2.3.2 shows
that eigenspaces Vµ of the adjacency operator are H-invariant under the per-
mutation representation. Therefore, one can use the degree of the irreducible
representations of the subgroup H to obtain lower bounds for multiplicity of
the eigenvalues of the pair-graph G(G,H,S).
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Proposition 2.3.3. Let S be a subset G with SH symmetric and ψ be a H-
invariant automorphism of G. Then the pair-graphs G(G,H,S) and G(G,H,ψ(S))
are isomorphic.

Proof. For any h ∈H,x ∈ G −H,s ∈ S, we have

(h,hs)z→ (ψ(h), ψ(h)ψ(s))
(x,xs−1)z→ (ψ(x), ψ(x)ψ(s)−1).

Since ψ is H-invariant, it is a graph isomorphism with inverse ψ−1.

Examples of such automorphisms are the inner automorphisms ψh(g) =
h−1gh with h ∈H.

Proposition 2.3.4. Let S be a subset of G with SH symmetric and Rh′ the
right translation by h′ ∈H. Then the pair-graphs G(G,H,S) and G(G,H,SH ∪
Rh′(SO)) are isomorphic.

Proof. The map ϕh′ ∶ G→ G given by ϕh′(x) = xh′ for x ∈ G−H and ϕh′(h) = h
for h ∈H is clearly bijective. For h ∈H and s ∈ SH , the edge (h,hs) is fixed by
ϕh′ . As for h ∈H,s ∈ SO, we have

(h,hs)z→ (h,hsh′) = (h,hs′),
(x,xs−1)z→ (xh′, xs−1) = (xh′, xh′s′−1),

with s′ = sh′ ∈ Rh′(SO). Therefore the map ϕh′ is an graph isomorphism with
inverse ϕh′−1 .

Bipartite group-subgroup pair graphs

For a group G and symmetric subset S, if there is an homomorphism χ ∶ G →
{−1,1}, such that χ(S) = {−1} then the Cayley graph G(G,S) is bipartite, this
condition is also necessary when the graph is connected, for a proof see chapter
4 of [4]. It is clear that the existence of such homomorphism also implies that
the pair-graph G(G,H,S) is bipartite, since it is a subgraph of the Cayley
graph G(G,S∪S−1). In general, the bipartiteness of the pair-graph G(G,H,S)
is not enough to construct a homomorphism from G to {−1,1}.

Theorem 2.3.5. If there is a group homomorphism χ ∶H → {−1,1}, such that
χ(SH) = {−1} and χ(S̃O) = {1}, then the pair-graph G(G,H,S) is bipartite.
The converse holds when the pair-graph is connected.

Proof. Suppose the homomorphism χ exists, then we will prove that there are
no cycles of odd length in the pair-graph. Since any cycle of nonzero length
starting on x ∈ G−H contains at least one element of h ∈H we restrict to cycle
starting on h ∈ H. Suppose there is one such path of odd length l, and as in
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the proof of Lemma 2.2.1 we see that this path consists of elements of SH and
S̃O, namely

h = hs′1s′2 . . . s′n+k, (2.3)

where s′i ∈ SH ∪ S̃O, k is the number of elements of SH and n is the number of
elements of S̃O. In particular, we have

l = 2n + k,

so that k is odd. We apply the homomorphism to (2.3) to get

χ(h) = (−1)k(1)nχ(h) = −χ(h),

and the result follows from this contradiction. On the other hand suppose that
the pair-graph is bipartite and connected and let V+ and V− be the bipartition
of the graph, with e ∈ V+. For hinH, set

χ(h) =
⎧⎪⎪⎨⎪⎪⎩

1 if h ∈ V+
−1 if h ∈ V−

,

from this and the bipartiteness of the graph it follows that χ(SH) = {−1} and
χ(S̃O) = {1}. Note that since the graph is bipartite and connected, we can
write

χ(h) = (−1)l(e,h),
where l(e, h) is the length of a path from e to h in G(G,H,S), in other words,
the word length of h with the generators SH and S̃O. It is clear that with this
definition the map χ is a homomorphism that satisfies the required conditions.

Example 2.3.6. Let G = A4, the alternating group of 4 letters, H, the Klein
four-group embedded as a subgroup of G, and S = {(1,2)(3,4), (1,4)(2,3),
(1,2,3), (1,4,3), (2,3,4), (2,4,3)}, using cycle notation. Observe that (1,3,2),
the inverse of (1,2,3), is not contained in S. The pair-graph G(G,H,S) is a
bipartite graph. The graph is presented in Figure 2.6, with the vertices of the
bipartition shown in different shapes.

The homomorphism χ ∶H → {−1,1} is given by

χ(e) = 1, χ((1,3)(2,4)) = 1,

χ((1,2)(3,4)) = −1, χ((1,4)(2,3)) = −1,

it is easy to verify that it has the required properties. On the other hand,
any homomorphism ρ ∶ G → {−1,1} with ρ(S) = {−1}, would have ρ(S−1) =
{−1}, but in this case (1,3,2) = (1,2)(3,4) ⋅ (1,4,3), therefore there are no
homomorphisms that satisfy the condition ρ(S) = {−1}.

Note that in the case SH = ∅, the sets H and G −H form a bipartition of
G(G,H,S), therefore the pair-graph G(G,H,S) is bipartite. In this case, the
corresponding homomorphism χ ∶ H → {−1,1} is the trivial one: χ(h) = 1, for
all h ∈H.
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Figure 2.6: The bipartite pair-graph G(G,H,S).

Some remarks on infinite pair-graphs

In this section we consider the case G is an infinite group, H a given subgroup
of G and S a subset of G such that SH is symmetric. The definition for group-
subgroup pair graph G(G,H,S) remains the same as in Definition 2.1.1.

The results on degree structure of Section 2.1 hold without any changes
when the generating set S and the index [G ∶ H] are finite. For instance, if
G = Z, H = 3Z and S = {−6,1,4,5,6,11}, then the vertices of H in the resulting
pair-graph G(G,H,S) have degree 6 and the vertices of the cosets 3Z + 1 and
3Z+2 have degree 2. Note that when the generating set S and the index [G ∶H]
are not finite, the inequality of Corollary 2.1.8 cannot be used, otherwise the
results on that section apply without changes.

The results of connectedness, and in particular Theorem 2.2.3 and Propo-
sition 2.2.5 hold without modification. It is important to note that when the
index [G ∶ H] is not finite a corresponding connected group-subgroup pair
graph has vertices with infinite degree, in other words, the resulting graph is
not locally finite.

When the pair-graph contains no isolated vertices, then the number of con-
nected components is given by

[H ∶ ⟨SH ∪ S̃O⟩]

as in Theorem 2.2.6. The results of Sections 2.3 on group actions and 2.3 on
bipartite pair-graphs hold without changes.

2.4 Structure theorems for connected pair-graphs

For this section fix a finite group G and subgroup H. We consider three cases,
depending on the choice of subset S. The first case is when SH is empty, and
the corresponding graph G(G,H,S) contains no degree one vertices, in other
words, ∣Hg ∩ S∣ > 1 for g ∈ G −H.

For each i we define a corresponding symmetric multiset:

Ŝi = {sis−1
j ∣si, sj ∈ Si, j ≠ i},
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and the union

Ŝ =
k

⋃
i=1

Ŝi.

Note that each set Ŝi has cardinality ∣Si∣(∣Si∣−1). We will consider the Cayley
(multi-)graph G(H, Ŝ) and its barycentric division G(2)(H, Ŝ), namely, we con-
struct a strong graph morphism from G(2)(H, Ŝ) to the pair-graph G(G,H,S).
Let φ ∶ G(2)(H, Ŝ)→ G(G,H,S) be defined on the vertices by

φ(h) = h,
φ((h,hsis−1

j )) = hsi,

where h ∈ H and sis
−1
j ∈ Ŝ. Since the pair-graph is connected and by the

definition of Ŝ, it follows that this is a surjective map. Now, the induced map
on the edges satisfies

φ((h, (h,hsis−1
j ))) = (φ(h), φ((h,hsis−1

j ))) = (h,hsi),

and the right hand side is a vertex of the pair-graph G(G,H,S), therefore φ
is a graph homomorphism. Conversely, let (h,hsi) be an edge of G(G,H,S)
with si ∈ Sl. Since by assumption there are no vertices of degree one, there is
a sj ∈ Sl such that sis

−1
j ∈ Ŝ. Now, since (h, sis−1

j ) is an edge of G(H, Ŝ) and

φ((h, (h,hsis−1
j ))) = (h,hsi),

therefore the map φ is a surjective strong graph morphism. By the homomor-
phism theorem for graphs, we have

G(G,H,S) ≃ G(2)(H, Ŝ)/ ∼φ,

where ∼φ is the congruence induced by φ. Since all the congruences that we
consider are of this type, we write ∼ for the congruence ∼φ.

Proposition 2.4.1. Let G be a finite group, H a subgroup and S a subset
of G such that SH is empty and the corresponding pair-graph G(G,H,S) is
connected and has no degree one vertices. Then, with the foregoing notation,

G(G,H,S) ≃ G(2)(H, Ŝ)/ ∼ .

The second case is when the pair-graph has not degree one vertices. In this
case, using the proposition above we immediately get:

Proposition 2.4.2. Let G be a finite group, H a subgroup and S a subset of
G such that the corresponding pair-graph G(G,H,S) is connected and has no
degree one vertices. Then, with the foregoing notation,

G(G,H,S) ≃ G(H,SH)⊕ G(2)(H, ŜO)/ ∼ .
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The operation ⊕ in the proposition above is the generalized edge sum. The
vertices (resp. edges) of the resulting graph is the union of the vertices (resp.
edges) of the summands.

Now, define the subset of SO

S̄ = ⋃
∣Si∣=1

Si,

and set G1 = G(G,H, S̄). This graph contains all the degree one vertices of the
pair-graph G(G,H,S).

Theorem 2.4.3. Let G be a finite group, H a subgroup and S a subset of G
such that the corresponding pair-graph (G,H,S) is connected. Then, with the
foregoing notation,

G(G,H,S) ≃ G(H,SH)⊕ G(2)(H, ŜO)/ ∼ ⊕ G1.

2.5 Spectra of group-subgroup pair graphs

A set of apparent eigenvalues of a group-subgroup pair graph

The trivial eigenvalue of a k-regular graph is µ = k and it corresponds to any
constant eigenfunction f on the vertices of the graph. By extension, the trivial
eigenvalue of a Cayley graph G(G,S) is µ = ∣S∣. In this section we extend this
notion to the group-subgroup pair graphs.

Theorem 2.5.1. Let G be a group, H a subgroup of G of index [G ∶ H] =
k + 1 ≥ 2, S a subset of G such that SH is symmetric and ∣SO ∣ ≠ 0. Then

µ± =
∣SH ∣ ±

√
∣SH ∣2 + 4 (∑k1 ∣Si∣2)

2
(2.4)

are eigenvalues of the graph G(G,H,S). The corresponding eigenfunctions are
defined by

f±(y) =
⎧⎪⎪⎨⎪⎪⎩

µ±, if y ∈H
∣Si∣ if y ∈Hxi, i ∈ [k].

Proof. From (2.4), the numbers µ± satisfy

(µ±)2 − ∣SH ∣µ± −
k

∑
i=1

∣Si∣2 = 0.
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Then, for h ∈H, we have

Af±(h) =∑
s∈S

f±(hs)

= ∑
s∈SH

f±(hs) +
k

∑
i=1

∑
s∈Si

f±(hs)

=∣SH ∣µ± +
k

∑
i=1

∣Si∣2 = (µ±)2

=µ±f(h).

Similarly, for x ∈Hxi, i = 1, . . . , k,

Af±(x) = ∑
s∈Si

f(xs−1)

=µ±∣Si∣
=µ±f±(x).

Note that for the case ∣SO ∣ = 0, µ+ is an eigenvalue with corresponding
eigenvector f+ as defined in the above Theorem, but f− ≡ 0 so it is not an
eigenfunction.

Proposition 2.5.2. The eigenvalue µ+ is the largest eigenvalue of the graph
G(G,H,S) with multiplicity [H, ⟨SH ∪ S̃O⟩].

Proof. First, consider the case of a connected pair-graph G(G,H,S), in particu-
lar ∣Si∣ ≠ 0 for all 0 ≠ i ∈ [k] and the eigenfunction f+ takes only positive values.
By Theorem 8.1.4 and Corollary 8.1.5 of [9], any eigenfunction that only takes
nonzero values of the same sign corresponds to the largest eigenvalue, which
has multiplicity 1. The eigenfunction f+ satisfies this condition, therefore cor-
responds to the largest eigenvalue and it is an eigenvalue of multiplicity one,
so the statement of the proposition follows.

For the remaining case, let h ∈ H and consider the connected component
Γh as a subgraph of G(G,H,S) and note that f+∣Γh

is an eigenfunction of Γh
with eigenvalue µ+. Then by the argument above, µ+ is the largest eigenvalue
of Γh with multiplicity 1. Now, it is well known that the characteristic poly-
nomial pG(x) of the graph G = G(G,H,S) is the product of the characteristic
polynomials of its connected components,

pG(x) = pΓh1
(x)pΓh2

(x) . . . pΓhr
(x)xl,

where r is the number of connected components of G(G,H,S) containing el-
ements of H and l the number of isolated vertices. Moreover, since µ+ is the
largest root of pΓhi

(x) for each hi ∈ H, then is the largest root of pG(x) and
therefore the largest eigenvalue of G(G,H,S). Furthermore, since µ+ is a sim-
ple eigenvalue for each of the subgraphs Γhi , then by Theorem 2.2.6 µ+ is an
eigenvalue of G(G,H,S) with multiplicity equal to r = [H, ⟨SH ∪ S̃O⟩].
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Example 2.5.3. Let G = Z/12Z, H ≃ Z/4Z as a subgroup of G and S =
{1̄, 3̄, 8̄, 9̄, 1̄0, 1̄1}. The pair-graph G(G,H,S) (shown in Figure 2.7) has the
eigenvalue µ+ = 4 with multiplicity 1 and µ− = −2 with multiplicity 4, the
remaining eigenvalues are µ = 2 with multiplicity 2 and µ0 = 0 with multiplicity
5.

Figure 2.7: The pair-graph G(G,H,S) of Example 2.5.3

By Proposition 2.5.2, when SH is empty the eigenvalue µ− is the most
negative eigenvalue of the group-subgroup pair graph. In the general case, the
above example shows the eigenvalue µ− may have higher multiplicity even when
µ+ has multiplicity 1.

From the decomposition of the characteristic polynomial of the adjacency
matrix, we can obtain a lower bound for the multiplicity of the eigenvalue
µ0 = 0.

Proposition 2.5.4. Let G be a group and H a subgroup of G of index [G ∶
H] ≥ 2. The multiplicity of the eigenvalue µ0 = 0 of a nontrivial pair-graph
G(G,H,S) is at least

∣G∣ − ∣H ∣ −min(∣HSO ∣, ∣H ∣) =
⎧⎪⎪⎨⎪⎪⎩

∣G∣ − ∣H ∣ if SO = ∅.
∣G∣ − 2∣H ∣ if SO ≠ ∅.

In particular, if [G ∶H] > 2, µ0 is an eigenvalue of the pair-graph G(G,H,S).

Proof. First, suppose that the pair-graph G(G,H,S) contains isolated vertices,
then from the factorization of the characteristic polynomial of the adjacency
matrix we have that µ0 = 0 is an eigenvalue with multiplicity at least the number
of isolated components, by Theorem 2.2.6 this number is ∣G∣− ∣H ∣− ∣HSO ∣. For
a general pair-graph G(G,H,S), consider an eigenfunction f associated with
the eigenvalue µ0 = 0 with f(h) = 0 for h ∈H, then f must satisfy the ∣H ∣ linear
equations

∑
s∈SO

f(hs) = 0.

The matrix B corresponding to this system is a ∣H ∣× ∣G−H ∣ matrix, then from
elementary linear algebra it holds that ∣H ∣ is an upper bound for the rank of B.
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Therefore the kernel of B has dimension at least ∣G∣−2∣H ∣, so the multiplicity of
the eigenvalue µ0 = 0 is at least ∣G∣ − 2∣H ∣. The result follows from considering
the two cases at the same time.

From the above discussion, for a given pair-graph G(G,H,S) with [G ∶H] ≥
2 there is a set {µ+, µ−, µ0} of eigenvalues that are apparent from the properties
of the group, subgroup and generating set.

Definition 2.5.5. The trivial eigenvalues of the group-subgroup pair graph
G(G,H,S) is the set given by

• {∣S∣} when [G ∶H] = 1, or {∣S∣,−∣S∣} if the graph is bipartite.
• {µ+, µ−} when [G ∶H] = 2.
• {µ+, µ−, µ0} when [G ∶H] > 2.

Example 2.5.6. The pair-graph in Example 2.1.3 has ∣SO ∣ = ∣S∣ = 16, with four
cosets of degree 2 and two cosets of degree 4, therefore the trivial eigenvalues
are µ± = ±4

√
3, and µ0 = 0 with multiplicity bounded below by 35. The pair-

graph in Example 2.3.6 has ∣SH ∣ = 2 and ∣S1∣ = ∣S2∣ = 2, so its trivial eigenvalues
are µ+ = 4, µ− = −2 and µ0 = 0 with multiplicity at least 4.

Eigenfunctions for nontrivial eigenvalues

When the pair-graph G(G,H,S) is connected, the eigenfunction corresponding
to the trivial eigenvalue µ+ is constant on the cosets. The situation for the
remaining eigenvalues is given in the following result.

Proposition 2.5.7. Retain the notation of Theorem 2.5.1 and let f be an
eigenvalue of the pair-graph G(G,H,S) associated with a nontrivial eigenvalue
µ. Then, for any coset Hxi

∑
x∈Hxi

f(x) = 0. (2.5)

Moreover, if g is an eigenfunction associated with the eigenvalue µ0 = 0, then

∑
h∈H

g(h) =
k

∑
i=1

∣Si∣ ∑
x∈Hxi

g(x) = 0. (2.6)

Proof. For a fixed s ∈ Si, we have

∑
h∈H

f(hs) = ∑
x∈Hxi

f(x).

Then, summing over all s ∈ Si,

∑
s∈Si

∑
h∈H

f(hs) = ∣Si∣ ∑
x∈Hxi

f(x) (2.7)
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Note that this includes the case Hx0 =H. Similarly, we see that

∣Si∣ ∑
h∈H

f(h) = ∑
x∈Hxi

∑
s∈Si

f(xs−1)

= µ ∑
x∈Hxi

f(x) (2.8)

Therefore, summing (2.7) over all Si and SH ,

µ ∑
h∈H

f(h) = ∣SH ∣ ∑
h∈H

f(h) +
k

∑
i=1

∣Si∣ ∑
x∈Hxi

f(x) (2.9)

Now, multiplying (2.9) by µ and using (2.8) on the right-hand side gives

µ2 ∑
h∈H

f(h) = ∣SH ∣µ ∑
h∈H

f(h) +
k

∑
i=1

∣Si∣2 ∑
h∈H

f(h).

If µ ≠ 0 and ∑h∈H f(h) ≠ 0 it follows that µ = µ±, contradicting the hypothesis.
Therefore, (2.5) follows for µ ≠ 0. The result (2.6) for µ = 0 follows from (2.8)
and (2.9).

Proposition 2.5.8. Let f be an eigenfunction of the pair-graph G(G,H,S)
associated with the eigenvalue µ. If f ∣H /≡ 0 and f is constant on the cosets of
H then µ is a trivial eigenvalue.

Proof. For h ∈H, we have

µf(h) = ∣SH ∣f(h) +
k

∑
i=1

∣Si∣f(xi), (2.10)

and
µf(xi) = ∣Si∣f(h). (2.11)

If µ = 0 then f ∣H ≡ 0, contradicting the hypothesis. Then, substituting (2.11)
into (2.10) we obtain

f(h)(µ2 − µ∣SH ∣ −
k

∑
i=1

∣Si∣2) = 0.

Since f(h) ≠ 0, µ is one of the trivial eigenvalues.

Returning to the ideas following Proposition 2.3.2, let V be the subspace of
L(G) consisting of functions constant on the cosets of H. This is a H-invariant
subspace under the permutation representation λH , and the restriction to this
subspace corresponds to the trivial representation of H in L(G). Then Propo-
sition 2.5.8 shows that any eigenspace Vµ ⊂ V corresponds to either one of the
trivial eigenvalues µ± or the zero eigenvalue (when f ∣H ≡ 0).

As an application, we relate the nontrivial eigenvalues of two pair-graphs
with complementary generating set.
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Corollary 2.5.9. Let S be a subset of G with SH = ∅, and set S′ = (G−H)−S.
If f is an eigenfunction of G(G,H,S) associated with a nonzero eigenvalue µ ≠
µ±, then f is an eigenfunction of G(G,H,S′) corresponding to the eigenvalue
−µ.

Proof. Denote the adjacency operator of the graphs G(G,H,S), G(G,H,S′)
and G(G,H,G −H) by A,B and C respectively, so that C = A +B. We have

Bf(x) = (C −A)f(x) = Cf(x) − µf(x),

therefore it is enough to prove Cf(x) = 0. In other words, that

∑
h∈H

f(h) = 0,

∑
x∈G−H

f(x) = 0,

this is true by Proposition 2.5.7.

Example 2.5.10. For G = Z/20Z, H = Z/10Z, and S = {3̄, 5̄, 7̄}, S′ = {1̄, 3̄,
5̄, 1̄3, 1̄5, 1̄7, 1̄9} we have G(G,H,S) and G(G,H,S′) pair-graphs shown in
Figure 2.8.

Figure 2.8: The pair-graphs with the same nontrivial eigenvalues, shown in
Table 2.1.

λi µi
3 7

1
2
(3 +

√
5) 1

2
(3 +

√
5)

1
2
(3 +

√
5) 1

2
(3 +

√
5)

1
2
(1 +

√
5) 1

2
(1 +

√
5)

1
2
(1 +

√
5) 1

2
(1 +

√
5)

1 1
1
2
(−1 +

√
5) 1

2
(−1 +

√
5)

1
2
(−1 +

√
5) 1

2
(−1 +

√
5)

1
2
(3 −

√
5) 1

2
(3 −

√
5)

1
2
(3 −

√
5) 1

2
(3 −

√
5)

Table 2.1: Table of nontrivial eigenvalues for the pair-graphs of Figure 2.8.
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The table 2.1 contains the positive eigenvalues for both of the graphs. Since
both graphs are bipartite the remaining eigenvalues correspond to the negatives
of the ones shown. Note that S ∪ S′ ≠ G − H = {1̄, 3̄, 5̄, . . . , 1̄9}, but S′′ =
R4(S) = {7̄, 9̄, 1̄1} is such that G(G,H,S) ≅ G(G,H,S′′) by Proposition 2.3.4,
and S′′ ∪ S′ = G −H.

When the subgroup is of index 2, the sum over the elements of any coset
is zero for an eigenfunction of the corresponding pair-graph, including those
associated with the zero eigenvalue. Therefore, the result of Corollary 2.5.9
holds for any nontrivial eigenvalue for the index 2 case. This is further explored
in section 3.1.



Chapter 3

Applications

3.1 Spectra of regular pair-graphs and Ramanujan
graphs

Nontrivial regular pair-graphs G(G,H,S) are bipartite when [G ∶ H] = 2. The
spectra of these graphs is symmetric about 0 and the largest eigenvalue is the
trivial eigenvalue µ+ = ∣S∣.

Let G be a finite group of order 2n and H the subgroup of index 2. Then,
for any subset S ⊂ G−H with ∣S∣ = k, let S′ = (G−H)−S. We have ∣S′∣ = n−k
and any constant function f is an eigenfunction of both of the pair-graphs
G(G,H,S) and G(G,H,S′) corresponding to µ1 = k and λ1 = n−k, respectively.
Similarly, for c ∈ C×, the function f = c(δH − δG−H) is an eigenfunction of
G(G,H,S) and G(G,H,S′) corresponding to µ2n = −k and λ2n = k − n.

Lemma 3.1.1. Let G be a group, H a subgroup of index 2 and S a subset of
G −H with ∣S∣ = k. Set S′ = (G −H) − S. If the pair-graph G(G,H,S) is not
connected, then there are independent eigenfunctions f and g of G(G,H,S)
associated to µ = ±k such that f − g is an eigenfunction of G(G,H,S′) corre-
sponding to the eigenvalue −µ.

Proof. With the same notation as in the proof of Corollary 2.5.9, for a con-
nected component Γ of G(G,H,S), consider the function f = δΓ or f = δΓ∩H −
δΓ−H , which can be verified to be eigenfunctions corresponding to µ = k and
µ = −k, respectively. We can similarly define g with respect to a different
connected component Ω of G(G,H,S), then clearly f and g are linearly inde-
pendent. Note that there are no isolated vertices on the graph, therefore by
Proposition 2.2.5, all the connected components have the same cardinality, in
particular ∣Γ ∩H ∣ = ∣Ω ∩H ∣ and ∣Γ −H ∣ = ∣Ω −H ∣. Then, we have

Cf(h) = ∑
x∈G−H

f(x) = ∑
x∈Γ−H

f(x) for h ∈H,

Cf(x) = ∑
h∈H

f(h) = ∑
h∈Γ∩H

f(h) for x ∈ G −H.

It follows that Cf = δH ∣Γ−H ∣+ δG−H ∣Γ∩H ∣ or Cf = −δH ∣Γ−H ∣+ δG−H ∣Γ∩H ∣
depending on the whether µ = k or µ = −k. Then it is clear that C(f − g) = 0
and

B(f − g) = (C −A)(f − g) = C(f − g) −A(f − g) = −µ(f − g).

26
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By Theorem 2.5.1, when G(G,H,S) is not connected the eigenvalue µ = k
has multiplicity equal to the number c of connected components of G(G,H,S),
then by Lemma 3.1.1 the graph G(G,H,S′) also has the eigenvalue µ = k with
multiplicity c − 1. For regular pair-graphs we can reformulate the results of
Corollary 2.5.9 and Lemma 3.1.1 as follows

Theorem 3.1.2. Let G be a group of order 2n, H a subgroup of index 2 and
S a subset of G − H with ∣S∣ = k. Suppose that λ1 ⩾ λ2 ⩾ . . . ⩾ λ2n is the
spectrum of the pair-graph G(G,H,S). Then there is a (n − k)-regular pair-
graph G(G,H,S′) with spectrum µ1 ⩾ µ2 ⩾ . . . ⩾ µ2n such that

λi = µi

for i ≠ 1,2n.

Remark 3.1.3. Theorem 3.1.2 defines a relation between the nontrivial spectra
of graphs for complementary choices of S. Moreover, Example 2.5.10 shows
that for a k-regular graph G(G,H,S), there can be more than one (n − k)-
regular G(G,H,S′) graph with the same nontrivial spectrum. In fact, if we
find one, by using Proposition 2.3.4 with right actions of H we can obtain
families of graphs with the same nontrivial spectrum.

Recall that a Ramanujan graph is a connected k-regular graph with the
property

∣µ∣ ⩽ 2
√
k − 1,

for any eigenvalue µ different from ±k.

Corollary 3.1.4. Suppose that [G ∶ H] = 2. Then a nontrivial regular con-
nected pair-graph G(G,H,S) is a Ramanujan graph when

∣S∣ ⩾ n + 2 − 2
√
n,

Proof. By Theorem 3.1.2, any k-regular pair-graph G(G,H,S) has nontrivial
eigenvalues µ satisfying ∣µ∣ ⩽ min{k,n − k}. Also, the pair-graph G(G,H,S) is
a Ramanujan graph when said trivial eigenvalues satisfy ∣µ∣ ⩽ 2

√
k − 1. Consid-

ering the two inequalities, it follows that all k-regular pair-graphs G(G,H,S)
with k ⩽ 2 or k ⩾ n + 2 − 2

√
n are Ramanujan graphs.

Example 3.1.5. Let G =S4, H = A4. The set S = {(1,2), (1,3), (2,4), (3,4),
(1,2,3,4), (1,3,2,4), (1,4,2,3), (1,4,3,2)} is such that ∣S∣ = 8 satisfy the
bound of the corollary, so the corresponding G(G,H,S) graph is Ramanujan.
Its spectrum consist of ±8 with multiplicity 1, ±4 with multiplicity 2 and 0 with
multiplicity 18. Note that it contains the eigenvalues ±4 and as expected by
Theorem 3.1.2, the corresponding complementary 4-regular graph, generated
by S′ = {(1,2), (3,4), (1,3,2,4), (1,4,2,3)} has 3 connected components. Both
of the pair-graphs are shown in Figure 3.1.
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Figure 3.1: The Ramanujan pair-graph G(S4,A4, S) and its complementary
pair-graph G(S4,A4, (S4 −A4) − S)

Example 3.1.6. Let G = GL2(F3) and H = SL2(F3). Then ∣G∣ = 48 and
∣H ∣ = 24, in this case by Corollary 3.1.4, for any subset S with ∣S∣ ⩾ 17, the
resulting pair-graph G(G,H,S) graph is Ramanujan. For a particular choice of
S we obtain the 17-regular Ramanujan pair graph G(G,H,S) shown in Figure
3.2. The corresponding pair-graph G(G,H, (G−H)−S), also shown on the same
figure, generated by the complement of S in G −H, is a 7-regular Ramanujan
graph. This shows that the result of Corollary 3.1.4 is not a necessary condition.

Figure 3.2: The Ramanujan pair-graphs G(G,H,S) and G(G,H, (G−H)−S).

Since for a group G with a subgroup H of index 2, the class of regular
connected (bipartite) pair-graphs G(G,H,S) is an strict superset of that of bi-
partite connected Cayley graphs G(G,S), Corollary 3.1.4 results in Ramanujan
graphs that are not Cayley graphs for the given group.

3.2 Linear error-correcting codes

One of the problems of information theory is that of transmission of informa-
tion reliably over a noisy channel. We will consider only the binary symmetric
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channel, that is, the information is represented by elements of Fl2 for some
positive integer l and each bit is flipped during transmission with a given prob-
ability p. In order to correct the error on the transmission the source message
m ∈ Fk2 is encoded into a codeword c ∈ Fn2 with n ≥ k by adding redundancy, in
other words,

c = Gm
for some transformation G. The redundancy added is used by the decoder to
recover a decoded message m̂ ∈ Fk2 from the received message r ∈ Fn2 . The
transmission is successful if m and m̂ are (approximately) equal. The ratio k

n
of the lengths of the source message and the codeword is called information
rate of the code.

When the transformation G is linear, we say that the code is linear. In
practice, a linear code C of type (n, k) is a k dimensional F2-vector subspace of
Fn2 . The code corresponds to the image of G in the foregoing discussion. The
matrix representation G ∈ Matk,n(F2) of G is called the generator matrix of
the code, and any matrix H ∈ Matn−k,n(F2) such that

HtG = 0

is called a parity-check matrix of the code. Therefore, the parity-check matrix
can be interpreted as a set of linear conditions that an element t ∈ Fn2 must
satisfy in order to be an element of C. It is clear then that a linear code C is
determined by its parity-check matrix.

The Tanner graph T of C is a graph that represents the parity-check matrix
of a linear code C. The vertices of T consist of two sets P and C. Each vertex
p of P represents a parity-check condition of the code and each vertex c of
C represents a bit of the codeword, in other words, they represent rows and
columns of H, respectively. The vertices p and c are adjacent if the correspond-
ing entry of H is nonzero, it follows that the Tanner graph T is a bipartite
graph. Conversely, from a bipartite graph G one may define a linear code C by
taking as P and C the bipartition of the vertices. If the cardinalities of P and
C are n and l, respectively, the associated code is a (n − l, n)-type code. For
detailed information on linear codes and Tanner graphs, the reader is referred
to [10] or [13].

For a group G, subgroup H of index [G ∶ H] > 2 and generating set
S with SH = ∅, the corresponding pair-graph G(G,H,S) is bipartite. The
code associated with the pair-graph G(G,H,S), denoted by C(G,H,S), is

a (∣G∣ − 2∣H ∣, ∣G − H ∣,2)-type code with information rate r = [G∶H]−2
[G∶H]−1

. The

parity-check matrix H of this code is the submatrix of the adjacency matrix
of C(G,H,S) corresponding to the rows associated with elements H and the
columns associated with elements G −H.

Example 3.2.1. Consider G = Z/20Z, H ≃ Z/5Z the subgroup of index [G ∶
H] = 4 and S = {1̄, 2̄, 3̄, 7̄, 9̄}. In this case, the rate of the resulting code
C(G,H,S) is r = 3

4
. The resulting pair-graph G(G,H,S) and the Tanner graph

representation of the resulting code are shown in Figure 3.3.
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Figure 3.3: The Tanner graph representation of the code

The class of low-density parity check (LDPC) codes, or Gallager codes,
consists of linear codes with sparse parity-check matrices, or equivalently, with
sparse graph representation. Gallager codes are good codes in the sense of
minimum distance between codewords. Gallager codes are divided into regular,
where the vertices in each partition have the same degree, and irregular, with
no restriction on the degree of the vertices. Irregular Gallager codes are known
to perform better than regular ones at decoding [12]. From the results of
Section 2.1 one can see that both regular and irregular Gallager codes may be
modeled using group-subgroup pair graphs. Moreover, the sparsity of the code

C(G,H,S) may be measured by ∣S∣
∣G−H ∣−∣H ∣ , the proportion of nonzero entries of

the associated parity-check matrix.

Example 3.2.2. Set G = GL2(F5), where F5 is the finite field of 5 elements
and H = SL2(F5), then for a particular subset S of 7 elements taken from the
complement of H in G, we obtain the pair-graph G(G,H,S) shown in Figure
3.4. The resulting pair-graph is a connected graph consisting of 480 vertices of
degrees 2,3 and 7. This pair-graph is associated with a (240,360)-type code
C(G,H,S) of rate 2

3
and with a proportion on nonzero entries on the parity-

check matrix of 7
360

≈ 0.019.

According to the general theory, Gallager codes associated with group-
subgroup pair graphs are good in the sense of minimum distance, nevertheless
it would be desirable to study the performance of encoding and decoding for
particular choices of group G, subgroup H and generating set S.

3.3 Full spectrum of generalized cycle graph

In this section we consider the pair-graph C2n,m = G(Z/(n(m + 1)Z,Z/nZ, S),
where S is a subset with SH = ∅ and ∣Si∣ = 2. We call Cn,m the generalized
cycle of length 2n and degree m. The degree of the vertices of H is 2m and of
G−H is 2, therefore the number of edges of the graph is 2nm. When m = 1 we
have the usual cycle graph C2n. Note that a cycle with no repeated vertices in
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Figure 3.4: The pair-graph G(GL2(F5),SL2(F5), S).

C2n,m is of length 4 or 2n. Figure 3.5 shows the generalized cycle C8,2, note
that it has 12 vertices and 16 edges.

Figure 3.5: The generalized cycle C8,2 = G(Z/(12Z,Z/4Z, S).

In this section we use the structure theorem of section 2.4 to compute the
spectrum of C2n,m.

Theorem 3.3.1. The spectrum of C2n,m is given by

±
√

2m(1 + cos(2πx

n
)),

for x = 0,1,2, . . . , n − 1 and the eigenvalue 0 with multiplicity n(m − 1).

Proof. We note that the pair-graph G(G,H,S), with G = Z/(n(m+1)Z and H =
Z/nZ, is isomorphic to G(2)(H, Ŝ) by Proposition 2.4.1. We claim that actually
the pair-graph is isomorphic to G(2)(H, S̃). Since the map φ is surjective, it is
enough to check that the vertex and edge sets have the same cardinality. By
the remark after the definition of Ŝi, we have that ∣Ŝ∣ = 2m. Then the Cayley
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graph G(H, Ŝ) has nm edges, therefore the barycentric division G(2)(H, Ŝ) has
n(m + 1) vertices and 2nm edges, which proves the claim.

Now, the eigenvalues of G(H, Ŝ) are given by

λi = ∑
s∈Ŝ

χi(s),

where χi is an irreducible character of H. Now, we note that G(H, Ŝ) is
isomorphic to the Cayley graph G(H,R) where the multiset R contains the
elements {−1,1} with multiplicity m. Using this and the explicit form of the
irreducible characters of H, we have

λi = 2m cos(2πx

n
),

with x = 0,1,2, . . . , n − 1. Finally, using a theorem of Hashimoto ([7], page 231
Cor. 3.18), the eigenvalues of G(2)(H, Ŝ) are given by

±
√
λi + 2m = ±

√
2m(1 + cos(2πx

n
)),

for x = 0,1,2, . . . , n − 1 and 0 with multiplicity n(m − 1).

Note that is key to the result above the fact that the pair-graph Cn,m is

isomorphic to G(2)(H, Ŝ), in other words, the the fiber of x ∈ G − H of the
canonical inclusion

η ∶ G(2)(H, Ŝ)→ G(G,H,S) = Cn,m

consists of only one element.



Future works

In this work we introduced the group-subgroup pair-graph as an extension of
Cayley graphs. From this point of view we proved the basic properties of the
pair-graphs by analogy of those of Cayley graphs, and naturally this approach
also suggests some further topics of study of pair-graphs.

Harmonic analysis on pair-graphs

As mentioned in the Introduction, a regular graph G is vertex-transitive, there-
fore we can regard it as a homogeneous space G = G/H, where G is a group of
automorphisms of the graph and H is the stabilizer of a vertex. Then one can
use the representation theory of homogeneous spaces to obtain a decomposition
of the adjacency operator A of the graph G in terms of irreducible components
of G. In the case of Cayley graphs, the identification as a homogeneous space
is trivial and the relation between the eigenvalues of the adjacency operator
and the irreducible representations of G is well known. For more information
of this approach, the reader is referred to [5].

In principle, this approach cannot be used for pair-graphs as they are non-
regular in general, and therefore not vertex-transitive. Yet, as shown in section
2.5, there is a relation between the eigenvalues of the adjacency operator and
the representation of the subgroup H. In particular, the trivial eigenvalues
were related to the trivial representation of H. Moreover, in Section 2.4 we
showed how the structure of the pair-graph is related to certain Cayley graphs
on H, and in Section 3.3 we used a particular case of this relation to compute
the eigenvalues of the generalized cycle graph in terms of irreducible charac-
ters of H. It would interesting to see if these kind of results can be extended
to more general choices of group, subgroup and generating set. This kind of
results would be important for several problems, including random walks on
pair-graphs.

Explicit construction of expanders and Ramanujan graphs

In Section 3.1, we presented a way of constructing bipartite Ramanujan pair-
graphs G(G,H,S) that do not arise as Cayley graphs G(G,S). Moreover,
the bipartite Xp,q graphs of Lubotzky, Phillips and Sarnak can be considered
as group-subgoup pair-graphs. Therefore, there maybe a way to construct
new families of Ramanujan graphs (or expander graphs) using group-subgroup
pair-graphs. We would, however, need to have more detailed information on
the relation between the representations of the group and subgroup and the
eigenvalues of the graph, as described above.

33
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On the other hand, the concept of expander and Ramanujan graphs can be
expanded to nonregular graphs (see for example, [7]), so it would be interesting
to consider the construction of families of nonregular expanders and Ramanujan
graphs using pair-graphs in the way that Cayley graphs were used to construct
Ramanujan graphs.

Concrete construction of pair-graph based codes

In Section 3.2 we briefly described how pair-graphs may be used to model
error-correcting codes and give some formulas of the basic parameters of the
resulting codes, in particular to show that we can obtain Low density parity
check codes using this method. However, in order for a code to be useful in
practice we would need to have some estimates of the performance of decoding
under the known algorithms, for example the algorithm of belief propagation.
This requires understanding of the geometry of the resulting Tanner graph, in
particular the length of circuits and the girth of the graph. This suggests the
study of girth and diameter, among other graph properties, of pair-graphs in
terms of the group, subgroup and generating set.



Appendix A

Relation with group-subgroup
matrices

The motivation for the group-subgroup pair graph comes from the extension
of the group determinant for group-subgroup pairs, called wreath determinant
for group-subgroup pairs. In this appendix we show how one can relate the
adjacency matrix of a Cayley graph with the group matrix of the correspond-
ing group; then, by extending the idea for the matrix used for the wreath
determinant for group-subgroup pairs we obtain the rows corresponding to the
subgroup on the adjacency matrix of a certain group-subgroup pair graph,
which is enough to determine the complete adjacency graph.

For a group G = {g1, . . . , gn}, consider a polynomial ring R containing the
indeterminates xgi , for gi ∈ G, then the group matrix is a matrix M(G,φ) in
Matn,n(R) defined by

M(G,φ)i,j = xg−1i gj

for i, j ∈ [n] and where φ ∶ G → [n] is an enumeration function for G, used
implicitly. The determinant Θ(G) of the group matrix is called group deter-
minant of G and does not depend on the chosen enumeration of the elements
of G. For i, j we have (g−1

i gj)−1 = g−1
j gi, therefore for any element xg, the

corresponding transpose element is xg−1 .
Similarly, for a group G of order kn, and subgroup H of order n we define

the matrix M(G,H,φ, τ) ∈ Matn,kn(R) by

M(G,H,φ, τ)i,j = xh−1i gj ,

for hi ∈ H, gj ∈ G, i ∈ [n], j ∈ [nk] and where φ ∶ G → [nk] and τ ∶ H →
[n] are enumerations functions for G and H. Note that by considering only
the columns corresponding to elements of H of the matrix M(G,H,φ, τ) one
obtains the group matrix of H with respect to the orderings τ and φ∣H .

For a matrix A ∈Mn,kn, the wreath determinant of A is defined as

wrdetk(A) = det−
1
k (A[k]),

where A[k] is the row k-flexing of the matrix A and detα is the α-determinant.
Note that wreath determinant is defined for rectangular matrices where the
number of columns (resp. rows) is a multiple of the number of rows (resp.

35
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columns). For an extensive exposition of the wreath determinant and its prop-
erties the reader is referred to [8]. In the paper [6], the authors define the
wreath determinant for the pair G and H by

Θ(G,H,φ, τ) = wrdetk(M(G,H,φ, τ)).

In contrast with the ordinary group determinant, this wreath determinant for
G and H depends on the enumeration functions φ and τ .

For a given group G and symmetric subset S, by evaluating the correspond-
ing group matrix M(G,φ) by the rule

⎧⎪⎪⎨⎪⎪⎩

xs = 1 if s ∈ S
xg = 0 if g ∉ S

, (A.1)

one obtains a symmetric matrix. Furthermore, since g−1
i gj = s implies gis = gj ,

the corresponding matrix is the adjacency matrix of the Cayley graph G(G,S).

Example A.0.2. Consider S3, the symmetric group on three letters with the
ordering φ given by S3 = {e, (2,3), (1,2), (1,2,3), (1,3,2), (1,3)}, the group
matrix is

M(S3, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

x1 x2 x3 x4 x5 x6

x2 x1 x4 x3 x6 x5

x3 x5 x1 x6 x2 x4

x5 x3 x6 x1 x4 x2

x4 x6 x2 x5 x1 x3

x6 x4 x5 x2 x3 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where xi stands for xgi . Set S = {(1,2), (1,2,3), (1,3,2)}, then evaluating by
the rule (A.1) we get

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 1 1 0
0 0 1 1 0 1
1 1 0 0 0 1
1 1 0 0 1 0
1 0 0 1 0 1
0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

which can be verified to be the adjacency matrix of the Cayley graph G(S3, S).

Likewise, for group G, subgroup H and subset S as in definition 2.1.1, by
evaluating the matrix M(G,H,φ, τ) using the rule (A.1) we obtain a matrix
with nonzero entries (i, j) when h−1

i gj = s ∈ S. In other words, there are ones
in the matrix exactly when his = gj , which is the relation for the edges of the
group-subgroup pair graph G(G,H,S) in definition 2.1.1. The resulting matrix
corresponds to the rows associated with the elements of H in the adjacency
matrix of the pair-graph G(G,H,S) and can be completed by symmetry to
obtain the complete adjacency matrix.
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Figure A.1: The Cayley graph G(S3, S).

Example A.0.3. Let G = Z/12Z, H = {0̄, 3̄, 6̄, 9̄}, and S = {2̄, 4̄, 5̄, 7̄, 8̄} as in
Example 2.1.2, the corresponding matrix with respect to natural orderings φ
and τ is

M(Z/12Z,H,φ, τ) =

⎛
⎜⎜⎜
⎝

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x9 x10 x11 x0 x1 x2 x3 x4 x5 x6 x7 x8

x6 x7 x8 x9 x10 x11 x0 x1 x2 x3 x4 x5

x3 x4 x5 x6 x7 x8 x9 x10 x11 x0 x1 x2

⎞
⎟⎟⎟
⎠
.

Then, evaluating using (A.1), we get

A =
⎛
⎜⎜⎜
⎝

0 0 1 0 1 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1 1 0 1 1
0 1 1 0 0 0 0 0 1 0 1 1
0 1 1 0 1 1 0 0 0 0 0 1

⎞
⎟⎟⎟
⎠
,

which can be verified to correspond to the rows associated with elements of H
in the adjacency matrix of the pair-graph G(Z/12Z,H,S) of Example 2.1.2.

Note that in order to be able to complete the matrix by symmetry it is
necessary that SH = S∩H is symmetric, otherwise the submatrix corresponding
to elements of H is not symmetric. Also, when the group matrix is defined by
(xgig−1j

) the resulting Cayley graph is defined by left multiplication, the same is

true for the group-subgroup matrix for the wreath determinant and the group-
subgroup pair graph.
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